
International Technical Support Organization

Examples of
Using NetView for AIX

November 1994

GG24-4327-00

International Technical Support Organization

Examples of
Using NetView for AIX

November 1994

GG24-4327-00

IBM

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Special Notices” on page xiii.

First Edition (November 1994)

This edition applies to Version 2 Release 1 and Version 3 of IBM NetView for AIX (previously known as IBM
SystemView NetView/6000), Program Number 5696-731 for use with the RISC System/6000 AIX Version 3 Release
2, Program Number 5756-030.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 545, Building 657
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document provides an overview and examples of using NetView for AIX
V3R1. It assumes the reader has a general knowledge of NetView for AIX V2, as
well as a good understanding of AIX system and network management.

This document is only a summary of some initial uses of NetView for AIX V3R1
and is not intended to imply that all examples provided here are the extent of
possibilities of involving NetView for AIX in an enterprise′s network and systems
management activities. The reader of this document should have access to
development division documentation regarding NetView for AIX and the family of
products, particularly as relates to Systems Monitor for AIX, AIX LMU/6000, LNM
for AIX, and AIX SNA Manager/6000.

This document is intended for personnel who need information related to the
marketing and acceptance of network management products in an AIX V3
environment. A general knowledge of overall IBM and customer computing
systems and C language programming is assumed.

(300 pages)

 Copyright IBM Corp. 1994 iii

iv Examples of Using NetView for AIX

Contents

Abstract . i i i

Special Notices . xii i

Preface . xv
How This Document is Organized . xv
Related Publications . xvi
International Technical Support Organization Publications xvi
Acknowledgments . xviii

Chapter 1. Overview of NetView for AIX V3R1 1
1.1.1 NetView for AIX V3R1 and HP OpenView V3.3 1

1.2 Summary of Selected NetView for AIX V3R1 Enhancements 1

Chapter 2. Discovery . 5
2.1 What is Discovery in NetView for AIX? . 5
2.2 Open Technology . 5
2.3 Discovery and Polling Daemons . 5

2.3.1 The netmon Daemon . 5
2.3.2 The trapd Daemon . 7
2.3.3 The ovtopmd Daemon . 7
2.3.4 The ipmap Application . 7

2.4 Address Resolution . 7
2.4.1 Name Resolution . 9
2.4.2 Selection Name and the Label . 10

2.5 How to Configure the Discovery and Polling Options 10
2.5.1 SNMP Configuration . 10
2.5.2 Topology/Status Polling Configuration 12
2.5.3 The Seed File . 13

2.6 More About the Discovery Process . 22
2.6.2 Discovery Agent . 24

2.7 Problem Determination . 25
2.7.1 Example of Online Help . 26

2.8 Some Useful Hints . 32

Chapter 3. Database Extensions . 33
3.1 Overview of the Databases . 33

3.1.1 SnmpCollect . 33
3.1.2 Tralertd . 33
3.1.3 The trapd.log File . 34
3.1.4 Openview . 34
3.1.5 Extracting Information from the Flat File Database 36

3.2 What Database Support is New in NetView for AIX? 39
3.3 Configuration Steps . 40

3.3.1 Configuration of the AIX System for Use of RDBMS 42
3.3.2 Create the Database . 43
3.3.3 Specifying Default RDBMS System . 43
3.3.4 Specify that ovtopmd Will Use a Relational Database 44
3.3.5 Creation of SQL Tables in Openview Database 45

3.4 Using IP topology SQL Tables . 47
3.4.1 Structure of IP Topology SQL Tables 49

 Copyright IBM Corp. 1994 v

3.4.2 Conversion Between Flat File and SQL Database 50
3.5 Examples of SQL Queries for the IP Topology Database 51
3.6 Combining and Formatting SQL Queries . 54

3.6.1 SQL Sample wtqnode . 55
3.6.2 SQL Sample wtqnetwork . 57

3.7 Integrating SQL Queries Into the NetView for AIX GUI 58
3.8 trapdlog SQL Table . 60

3.8.1 Structure of the trapdlog Table . 60
3.8.2 Managing the trapdlog SQL Table . 61

3.9 Using the Information in the trapdlog SQL Table 64
3.9.1 Using the trapquerysql Command . 64
3.9.2 Using SQL to Extract trapdlog Data . 64
3.9.3 Using Embedded SQL with trapdlog . 65
3.9.4 Handling Multi-Line Events . 66

3.10 snmpCollect SQL Table . 67
3.10.1 Structure of the snmpCollect SQL Table 68
3.10.2 Managing the snmpCollect Data . 68

3.11 Using the Information in the snmpCollect SQL Tables 69
3.11.1 Built-in Query Commands . 69
3.11.2 Using SQL Select Commands with coldata 70

3.12 Performance Considerations . 71
3.13 Extending SQL Support to the Object Database 71

3.13.1 An Example of Using wtovwconv . 72

Chapter 4. Event Configuration . 75
4.1 Summary of AIX V3 Event, Trap and Alert Management 76
4.2 NetView for AIX Events and Traps . 76
4.3 NetView for AIX Event and Trap Daemons 76

4.3.1 NetView for AIX Daemons and Agents Raising Events 77
4.3.2 NetView for AIX Daemons Acting on Events 78

4.4 SNMP Configuration for AIX . 78
4.5 NetView for AIX Events . 81

4.5.1 The NetView for AIX Event Screen . 87
4.5.2 Event Card Information . 90

4.6 NetView for AIX Event Configuration . 90
4.7 Defining or Modifying Events . 92

4.7.1 Adding a New Enterprise . 92
4.7.2 Adding New Events . 92
4.7.3 The Event Log Format Field . 96
4.7.4 The Source Field . 96
4.7.5 Event Customization from the Command Line 97
4.7.6 Sample Event Generation Shell Script 97
4.7.7 Status Source and User Symbols . 103
4.7.8 Adding a New Enterprise with an Associated Event 113

4.8 NetView for AIX Filters . 121
4.8.1 Filter Editor Screen . 122
4.8.2 Activating a Filter . 124
4.8.3 Using the Filter APIs . 126

4.9 Dynamic Workspaces in NetView for AIX 129
4.9.1 Dynamic Workspace Creation for Example 1 129
4.9.2 Dynamic Workspace Creation for Example 2 131
4.9.3 Searching for Events in the Current Event Workspace 133
4.9.4 Searching by Criteria . 133
4.9.5 Searching by Filter . 135

4.10 Displaying Event Information . 135

vi Examples of Using NetView for AIX

4.11 Event Log . 139
4.12 Trap to Alert Conversion . 139
4.13 Host Interaction Examples . 140

4.13.1 Connection with RISC System/6000 Service Point and S/390
NetView . 140

4.13.2 Sending a NetView for AIX Event to S/390 NetView 140
4.13.3 Customizing NetView for AIX Aimed at S/390 Host Alerts 142
4.13.4 Changing the Description Code Point 145
4.13.5 Changing the Probable Cause Code Point 146
4.13.6 Code Point Qualifiers . 147
4.13.7 Checking in S/390 NetView . 149
4.13.8 Default Trap to Alert Conversions . 149

4.14 S/390 NetView Code Point Customization 152
4.14.1 Sending Commands from S/390 NetView to NetView for AIX 157

4.15 AIX Error Log Interaction with NetView for AIX 158
4.16 trapgend Daemon . 158

4.16.1 AIX Error Log Examples . 159
4.16.2 Example of Using the AIX errlog to Generate Events 160
4.16.3 Converting Existing AIX Errors into Events 160
4.16.4 Example of Creating New Error Definitions 162
4.16.5 NetView for AIX Event Configuration 164

Chapter 5. NetView for AIX Open Topology 169
5.1 Open Topology Components . 170
5.2 Applications Using Open Topology . 172
5.3 Terms and Concepts . 172

5.3.1 Specifying Icons when Using Open Topology 174
5.4 Network Discovery with Open Topology 175
5.5 Open Topology Service Access Points . 176

5.5.1 The Discovery Process . 176
5.5.2 Open Topology Invocations . 177
5.5.3 Using Open Topology Correlation . 178

5.6 The Open Topology API . 179
5.6.1 Elements of the Open Topology API 180

5.7 Open Topology Samples . 180
5.7.1 Worked Example Using Open Topology Sample Code 180

Chapter 6. Manager Takeover . 195
6.1 Definitions . 195

6.1.1 Management Example Scenario . 195
6.2 Configuring Managers and Containers . 197

6.2.1 Aids to Planning the Network Management Topology 198
6.2.2 Defining a Seed File . 198
6.2.3 Creating a Seed File . 199
6.2.4 Using the Seed File with the NetView for AIX 199
6.2.5 Creating a Seed File Using a NetView for AIX V3R1 Application . . 199

6.3 Running the Backup Process . 205
6.4 Backup Configuration EUI . 205

6.4.1 Adding a New Manager to the Backup Configuration 206
6.4.2 Container Configuration . 209
6.4.3 Configuration Summary . 210

6.5 The ITSO Environment . 210
6.5.1 Using Netmon Status to Drive Manager Backup, Case 1 213
6.5.2 Effect on RS60003 of a Re-IPL of RS60001 214
6.5.3 Effect on RS60003 of the Return of RS60001 215

Contents vii

6.5.4 Using Netmon Status to Drive Manager Backup, Case 2 215
6.6 Usage Notes . 216

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 217
7.1 Summary of NetView for AIX Interfaces 217
7.2 ITSO wteuiapx EUI Samples . 218

7.2.1 wteuiap6 Addressing the Multiple Operator Requirement 221
7.3 Installing and Managing wteuiap6 . 222
7.4 wtdriver6 Functions . 224
7.5 Output of wtdriver6 stat . 227
7.6 wteuiap6 Example 1 . 228
7.7 wteuiap6 Example 2 . 231
7.8 Execution Panels . 233

Appendix A. Open Topology MIB Reference 241
A.1 The Open Topology MIB . 241
A.2 An Open Technology MIB Cross Reference 243

A.2.1 Vertex Group: .1.3.6.1.4.1.2.5.3.1 . 243
A.2.2 Simple Connection Group: .1.3.6.1.4.1.2.5.3.2 244
A.2.3 Arc Group: .1.3.6.1.4.1.2.5.3.3 . 245
A.2.4 Graph Group: .1.3.6.1.4.1.2.5.3.4 . 246

A.3 State Information . 248
A.3.1 Operational State . 248
A.3.2 Status Information . 248
A.3.3 Mapping States and Status to NetView for AIX Displays 249

Appendix B. Automatic Seed File Example Programs 251

Appendix C. Open Topology Program Samples 255
C.1 Program Listing for wtotapi1.c . 255
C.2 wtgtm Shell Script Sample Listing . 264

Appendix D. Database Samples . 271
D.1 Sample Shell Script wtqnode . 272
D.2 Sample C Program wtqnode . 274
D.3 Sample C Program wtqnetwork . 278
D.4 Sample C Program wttraplog . 281
D.5 Sample Program wtovwconv . 283

Appendix E. NetView for AIX Default Events 287

Appendix F. Nvevents X11 app-defaults File 289

Appendix G. Selected AIX SNA Server Profiles 291
G.1 Selected S/390 VTAM Members . 295

Index . 297

viii Examples of Using NetView for AIX

Figures

 1. NetView for AIX V3 Discovery Daemons 6
 2. Browsing the Router Table MIB . 9
 3. SNMP Configuration . 11
 4. Topology/Status Polling Configuration . 12
 5. SMIT Panel After Restart Automatic Map Generation 15
 6. The NetView for AIX Map on Initial Startup 16
 7. Local Segment with No Seedfile and Automatic Discovery On 17
 8. The NetView for AIX Map After the Seed File 18
 9. Local Segment with Seedfile and Automatic Discovery On 19
10. Turning Off Discover New Nodes . 20
11. Auto Discovery Turned Off and Using Seed File 21
12. Local Segment with Seedfile and Automatic Discovery Off 22
13. The Legend . 24
14. Accessing NetView for AIX Help . 26
15. Selecting NetView for AIX and Administrator′s Reference 27
16. Showing 15 Found Occurrences . 28
17. Panel for Full Text of Selected Document 29
18. Setting Up Show Search Panel . 30
19. Search Panel for Fulltext of Selected Document 31
20. Search Panel for nmpolling Portion of Selected Document 32
21. NetView for AIX Topology Databases and APIs 35
22. Result of ovtopodump Command . 37
23. Result of ovobjprint Command . 38
24. Command ovmapdump . 39
25. Supported Remote Server RDBMS . 41
26. Unsupported Remote Server RDBMS . 41
27. Supported Remote Server RDBMS . 42
28. Setting the AIX Environment Variables . 43
29. The OpenView Database . 48
30. Script file to Automate Conversion of IP Topology Data in SQL Tables . 50
31. SQL Query of Interfaces for NodeID=rs60001 52
32. Characteristics of Interface objid=193 . 54
33. Logic for wtqnode Samples . 55
34. Sample Result of wtqnode Shell Script . 56
35. Example of wtqnode C Program Output . 57
36. Result of wtqnetwork Command . 58
37. Registration File for SQL Query Samples 59
38. Executing wtqnode from a NetView for AIX Menu 60
39. trapdhousekeep Shell Script . 63
40. Result of trapquerysql Command . 64
41. SQL Select Command for trapdlog . 64
42. Output from wttraplog Sample Program 65
43. Application Trap . 66
44. Contents of /usr/OV/log/trapd.log . 66
45. wttrapconv Shell Script . 67
46. nvHostSumCol Output . 69
47. nvQColData Command Example . 70
48. Sample snmpCollect SQL Query . 70
49. Modified wtqnode with Manually-Added Data from Object Database . . 73
50. SQL Select Command to Extract Additional Object Data 73
51. NetView for AIX Event Configuration Ins and Outs 75

 Copyright IBM Corp. 1994 ix

52. NetView for AIX V3 Daemons . 77
53. Events Window Showing Exit (Close Events) Option 82
54. A Selected Node . 83
55. The Events Window (Main Events) . 84
56. The Events Window (For Selected Node′s Events) 85
57. Option for Closing Selected Node′s Events 86
58. An Example of NetView for AIX Initial Screen Display 88
59. An Example of NetView for AIX Event Card 89
60. NetView for AIX Event Configuration Window 91
61. Configure Categories Panel . 93
62. NetView for AIX Add/Modify Event Window 95
63. Event Log Variables . 96
64. app_sendtrap Shell Script . 98
65. rs600010 After snmptrap Set Object Down 100
66. NetView for AIX Selected Events - Part 1 101
67. rs600010 After snmptrap Set Object Up 102
68. NetView for AIX Selected Events - Part 2 103
69. NetView for AIX Warning Screen . 103
70. IP Internet Submap . 105
71. IP Internet Submap Heading Toward Symbol 106
72. IP Internet Submap Symbol Description 107
73. IPMap - Network: Submap . 108
74. IPMap - Network: Submap Symbol Description 109
75. set_ip_status . 110
76. rs600010 Submap Without sna Symbol 111
77. rs600010 Submap with sna Symbol . 112
78. AIX DCE Event Display . 114
79. app_sendtrap_itso_enterprise Shell Script 115
80. itso.raleigh Enterprise and Specific Events Used in this Example . . . 117
81. Unknown Trap Arrived at NetView for AIX 118
82. itso.raleigh Enterprise and Specific Events Arrive 119
83. netView6000 Enterprise and Specific Events Arrive 120
84. netView6000 Enterprise and itso.raleigh Specific Events Arrive 121
85. Filter Editor Selection Screen . 122
86. The Enterprise-Specific Trap Selection Window 123
87. NetView for AIX Simple Filter Editor Screen 124
88. Filter Control Screen . 125
89. Example API wtevent1 . 126
89. Configuration/Filtering Points for Events 126
90. wtevent1.c Sample Program . 127
91. The Dynamic Workspace Panel . 129
92. Selecting From Category in Dynamic Workspace Panel 130
93. Dynamic Workspace Example 1 . 131
94. Options -> Show Status root.events1 . 132
95. Options -> Show Status root.events2 . 133
96. The Search by Criteria Window . 134
97. A Static Window Created with a Search by Criteria 134
98. Configure Additional Actions for Operator 136
99. The Output from the Calculation of SNA Events 137
100. rae_oper.sh Script . 138
101. The S/390 NetView View of an Uncustomized SNMP Alert 141
102. Alert Detail with No Customization . 141
103. ITSO_Codepoints . 143
104. Alert Editor Primary Screen . 145
105. Generic Alert Window . 146

x Examples of Using NetView for AIX

106. Editing Alert Probable Causes . 146
107. The Available Qualifiers List . 147
108. The Qualifiers Window . 148
109. The Completed Event Window . 148
110. Filter Editor Including Browse of Generic/Specific 150
111. Code Points for NODE DOWN Event . 151
112. S/390 NetView Node Down Recommended Action 151
113. S/390 NetView Node Down Alert Detail 152
114. From S/390 NetView: Locating the S/390 NetView Code Point Tables . 152
115. From S/390 TSO: Updating the Source for BNJ92UTB 154
116. Alerts Dynamic Shows User-Alerts Arrived (ITSC) 154
117. Example of Recommended Action with User Code Points 154
118. Example of SNA Down Event Detail with User Code Points - Page 1 . 155
119. Example of SNA Down Event Detail with User Code Points - Page 2 . 155
120. Example of SNA Up Event Detail with User Code Points - Page 1 . . . 156
121. Example of SNA Up Event Detail with User Code Points - Page 1 . . . 156
122. Example of SNA Up Event Detail with User Code Points - Page 2 . . . 157
123. RUNCMDs to NetView for AIX Service Point 158
124. AIX Error Descriptions Passed to NetView for AIX 159
125. Configuration for trapgend Event . 161
126. Daemon Down Event for errlogger . 161
127. add_errlog Sample Program to Write to the AIX Error Log 164
128. Configuration for trapgend Event . 166
129. AIX Error Log Display . 167
130. Components of IP and Open Topology 171
131. Some Elements of the Open Topology Model 174
132. The Discovery Process and the Open Topology MIB 175
133. SNA and Physical Network Topologies with No Correlation 177
134. LNM/6000 and SNA/6000 with Correlation 179
135. Command File nfsmap Using wtotapi1 Sample Code 182
136. The Root Submap as Updated by this Example 183
137. The NFS Server Submap . 184
138. The Mounted File System Connections 185
139. Commands to Add Vertices to NFS Submaps 186
140. rs60002 Submap, Showing Vertex Symbols 187
141. Systems Monitor Threshold Table Definition for NFS Monitoring 189
142. Systems Monitor Threshold Action Definition 190
143. Shell Script set_down - Send Change Vertex Status Trap 190
144. File Systems Submap with Status Change 191
145. Adding SAP Entries Correlating NFS and IP 192
146. Merged Lowest-Layer Submap Due to SAP Correlation 192
147. Protocol Switching Option . 193
148. Protocol Switching Panel . 193
149. A possible SOC configuration . 196
150. Manager Restored Operator Prompt . 197
151. ITSO Raleigh Network IP Map . 201
152. Build Seed File . 202
153. Example Seed File . 202
154. Read Seed File . 203
155. Initial Backup Configuration Screen . 204
156. Complete Backup Configuration Screen 204
157. Example of a Backup Configurator Initial Screen 205
158. Backup Configurator with RS60003 Selected (isManager=False) . . . 206
159. Backup Configurator with RS60003 Selected and isManager=True . . 207
160. Highlighted Symbol is the Only One managed 208

Figures xi

161. Highlighted Symbols Have Changed Color 209
162. Backup Configurator with RS60003 Managing Some Containers 210
163. A Shell Script to Test for a Running Netmon 212
164. Manager Down Message . 215
165. Overview of Possible User Interfaces with NetView for AIX 218
166. Overview of Example Application wteuiap3 219
167. Overall NetView for AIX Daemon Structure 220
168. wteuiap6 Daemon Structure . 221
169. wteuiap6 and Multiple EUIs . 222
170. wteuiap6 Install and Maintenance Options 223
171. Summary of wtdriver6/wteuiap6 Functions 224
172. showmq.shell . 232
173. showMQSeries.reg Registration File . 233
174. showMQSeries_Q_status . 233
175. Root Submap Without MQSeries Symbol 234
176. Root Submap After MQSeries Symbol Has Been Added 235
177. Submap Resulting from Clicking on ITSO_MQSeries 236
178. The Meta-Connection Submap . 237
179. Output of the Shell Driven by Executable Symbol 238
180. Submap Containing Both IP and MQSeries Symbols 239
181. Backup Registration File (/usr/OV/registration/C/backup) 251
182. build_seed.ksh . 252
183. req_seed.ksh . 253
184. ′C′ program build_seedfile.c . 254
185. wtotapi1.c Program Listing . 255
186. wtgtm Shell Script Listing . 264
187. wtqnode AIX Script File . 272
188. lc.sql SQL Query File . 272
189. lo.sql SQL Query File . 273
190. li1.sql SQL Query File . 273
191. wtqnode.ec C Program with Embedded SQL 274
192. Makefile for wtqnode.ec Program Sample 277
193. wtqnetwork.ec Program Listing . 278
194. wttraplog.ec Program Listing . 281
195. wtovwconv.c Program Listing . 283
196. NetView for AIX event - l (Sorted by Event Number) August 1994 . . . 287
197. /usr/lpp/X11/lib/X11/app-defaults/Nvevents Sample 289
198. Token Ring SNA DLC Profile . 291
199. SNA Node Profile . 292
200. Link Station Profile . 293
201. Control Point Profile . 294
202. Switched Major Node Definition Used In This Example 295
203. CDRSC Definition Used In This Example 296

xii Examples of Using NetView for AIX

Special Notices

This publication is intended to help network management professionals to
become familiar with examples of using NetView for AIX, together with the
NetView for AIX family of products. The information in this publication is not
intended as the specification of any programming interfaces that are provided by
NetView for AIX. See the PUBLICATIONS section of the IBM Programming
Announcement for NetView for AIX for more information about what publications
are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and integrate
them into the customer′s operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

ACF/VTAM AIX
AIX/6000 AIXwindows
IBM MVS/ESA

 Copyright IBM Corp. 1994 xiii

The following terms are trademarks of other companies:

NetView OS/2
VM/ESA SQL
DB2 DB2/6000
RISC System/6000 S/390

UNIX X/Open Company, Ltd.
HP Hewlett-Packard Company
OSF and OSF/Motif Open Software Foundation, Inc.
DECmessageQ Digital Equipment Corporation
Microsoft, Windows Microsoft Corporation
Oracle Oracle Corporation
Informix Informix Software, Incorporated
Novell and NetWare Novell, Incorporated
Sun, Solaris, NFS, Network File System Sun Microsystems, Incorporated

xiv Examples of Using NetView for AIX

Preface

This document provides an overview and examples of using NetView for AIX
V3R1. It assumes the reader has a general knowledge of NetView for AIX V2, as
well as a good understanding of AIX system and network management.

This document is only a summary of some initial uses of NetView for AIX V3R1
and is not intended to imply that all examples provided here are the extent of
possibilities of involving NetView for AIX in an enterprise′s network and systems
management activities. The reader of this document should have access to
development division documentation regarding NetView for AIX and the family of
products, particularly as relates to Systems Monitor for AIX, AIX LMU/6000, LNM
for AIX, and AIX SNA Manager/6000.

This document is intended for personnel who need information related to the
marketing and acceptance of network management products in an AIX V3
environment. A general knowledge of overall IBM and customer computing
systems and C language programming is assumed.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Overview of NetView for AIX V3R1”

This chapter provides an introduction to and overview of NetView for AIX
V3R1.

• Chapter 2, “Discovery”

This chapter provides a discussion of discovery as used by NetView for AIX.

• Chapter 3, “Database Extensions”

This chapter provides a summary of NetView for AIX V3R1 database support.

• Chapter 4, “Event Configuration”

This chapter provides a summary of NetView for AIX event configuration and
shows examples of using NetView for AIX V3R1 event configuration support.

• Chapter 5, “NetView for AIX Open Topology”

This chapter provides a summary and examples of using NetView for AIX
open topology support.

• Chapter 6, “Manager Takeover”

This chapter provides a summary and examples of manager takeover
support provided in NetView for AIX V3R1.

• Chapter 7, “wtdriver6/wteuiap6 Sample NetView for AIX EUI API”

This chapter gives a brief introduction and overview of using
wtdriver6/wteuiap6, a sample user-written implementation of the NetView for
AIX end user interface API.

• The following appendixes are included:

Appendix A, “Open Topology MIB Reference”
Appendix B, “Automatic Seed File Example Programs”
Appendix C, “Open Topology Program Samples”

 Copyright IBM Corp. 1994 xv

Appendix D, “Database Samples”
Appendix E, “NetView for AIX Default Events”
Appendix F, “Nvevents X11 app-defaults File”
Appendix G, “Selected AIX SNA Server Profiles”

Portions of this document have been extracted from IBM documents related to
the subject of AIX network management. Some such documents are referenced
in the following ″Related Publications″ section below.

Related Publications
The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this document.

IBM NetView for AIX Concepts: A General Information Manual Version 2,
GC31-6234

IBM NetView for AIX Programmer′s Reference, SC31-6239

IBM NetView for AIX Programmer′s Guide, SC31-6238

IBM NetView for AIX Application Interface Style Guide, SC31-6240

IBM NetView for AIX Installation and Configuration, SC31-6237

IBM NetView for AIX User′s Guide for Beginners, SC31-6232

IBM NetView for AIX and the Host Connection, SC31-6235

IBM NetView for AIX Database Guide, SC31-7190

IBM NetView for AIX Problem Determination, SC31-6236

IBM NetView for AIX Administration Reference, SC31-8104

IBM NetView for AIX Administrator′s Guide, SC31-7192

International Technical Support Organization Publications
IBM Systems Monitor Anatomy of a Smart Agent, GG24-4398 (Planned
availability: December, 1994)

Examples of Selected Configuration and Customization Matters Involved With
NetView for AIX and Its Family, GG24-2521 (Planned availability: December,
1994)

Examples of Using AIX NetView/6000 APIs, GG24-4059

A complete list of International Technical Support Organization publications, with
a brief description of each, may be found in:

International Technical Support Organization Bibliography of Redbooks,
GG24-3070.

To get a catalog of ITSO technical bulletins (redbooks) online, VNET users may
type:

TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG

xvi Examples of Using NetView for AIX

How to Order ITSO Technical Bulletins (Redbooks)

IBM employees in the USA may order ITSO books and CD-ROMs using
PUBORDER. Customers in the USA may order by calling 1-800-879-2755 or by
faxing 1-800-284-4721. Visa and Master Cards are accepted. Outside the
USA, customers should contact their IBM branch office.

Customers may order hardcopy redbooks individually or in customized sets,
called GBOFs, which relate to specific functions of interest. IBM employees
and customers may also order redbooks in online format on CD-ROM
collections, which contain the redbooks for multiple products.

Preface xvii

Acknowledgments
The authors of this document are:

Pascal Batut Paul Fearn Richard Hine Lex Molenbroek
IBM France IBM UK IBM UK IBM Netherlands

The advisors for this project were:

Dave Shogren, Rob Macgregor and Barry Nusbaum
International Technical Support Organization, Raleigh Center

Contributing, as well, to the effort in creating this document were:

Mike Chamberlain Jose Pedro Pina Coelho Ikuo (Gan) Iwamura
IBM UK IBM Portugal IBM Japan

Ernst Ziegler Valentina Nardecchia Yohichiroh Ishii Emma Locke
IBM Germany IBM Italy IBM Japan IBM UK

This publication is the result of a residency conducted at the International
Technical Support Organization, Raleigh Center.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Martha Crisson
Virinder Batra
Marvin Boswell
Fred Niemi
Ken Chambers
Jim Chou
Judith Dietz
Richard Buckman
Tom Hemp
Jim Collins
and the entire NetView for AIX development group, IBM Raleigh

Roberto Bresil, Abel Gripp and Gerson Brizola
Product Development, IBM Brasil

Many members of Information Development, IBM Raleigh

xviii Examples of Using NetView for AIX

Request for Feedback

Readers of this document are encouraged to feed back any information or
comments regarding any of the material in this document. Please send your
comments to:

Dave Shogren or Rob Macgregor
ITSO-Raleigh
VNET: SHOGREN at WTSCPOK or MCGREGOR at WTSCPOK

 or: IBM Corporation 545/B657/BB110
Attn: Dave Shogren / Rob Macgregor
Building 657 Rm BB110
4912 Green Road
Raleigh NC 27604

 INTERNET: shogren@vnet.ibm.com
mcgregor@vnet.ibm.com

Preface xix

xx Examples of Using NetView for AIX

Chapter 1. Overview of NetView for AIX V3R1

NetView for AIX Version 1 was first introduced during 1992. It was a solely a
manager for TCP/IP networks, using the SNMP protocol. Many of the features of
the first version have been carried forward, with enhancements, to Versions 2
and 3:

• Automatic IP network discovery

• Intuitive Motif-based graphical user interface

• Connectivity with S/390 NetView

• General-purpose SNMP applications, such as the MIB Browser, monitoring,
thresholding and data collection applications.

NetView for AIX Version 2, introduced during 1993, expanded greatly on the
Version 1 base. In summary the enhancements were:

• Application Programming Interfaces (APIs) introduced to enable other
applications to use NetView for AIX as a platform product

• Support for non-IP network topologies, based on the IBM generic topology
model

• Graphical user interface enhancements to improve navigation and window
management

• Event display and filtering enhancements

With the advent of NetView for AIX V3R1 the product is further enhanced, in
several areas:

• Openness. Additional relational database support provides better access to
data collected by NetView for AIX.

• Usability. Enhancements to the event-handling system improve the users′
effectiveness.

• Function. New capability added for manager fallback and IP discovery.

1.1.1 NetView for AIX V3R1 and HP OpenView V3.3
NetView for AIX uses code licensed from Hewlett-Packard Company for part of
its function. The level of OpenView code incorporated into NetView for AIX V3R1
is V3.3, except in the cases where IBM-developed features already deliver an
equivalent function.

1.2 Summary of Selected NetView for AIX V3R1 Enhancements
This section summarizes selected enhancements included in NetView for AIX
V3R1. We will explore these in more detail in later chapters.

NetView for AIX V3R1 introduces changes in the following areas:

• Discovery

NetView for AIX incorporates automatic discovery of IP network topology,
based on information gleaned from SNMP agents. NetView for AIX V3R1
provides several enhancements to this:

 Copyright IBM Corp. 1994 1

− Support for multiple subnet masks. This has also been shipped as a PTF
for Version 2.

Previously, if different subnet masks were used within a network, the
topology displayed might not accurately represent the real layout. For
example, it is common practice to assign ′restrictive ′ subnet masks (such
as 255.255.255.252) to point-to-point connections in order to save IP
network address ranges. The rest of the network would normally use a
less restrictive subnet mask such as 255.255.255.0.

Prior to the change, NetView for AIX would apply the less restrictive
mask to the point-to-point links, making them all appear to be connected
into one subnetwork. Following the change, NetView for AIX will
accurately represent the network, and will show the links as direct
connections, rather than interposing a network symbol.

− Support for more router interfaces.

With previous releases NetView for AIX had a limit of 22 interfaces per
router. With NetView for AIX V3R1 this has been increased to 2000.

• Database

NetView for AIX stores, topology, status, fault, performance and other
information about managed nodes in a series of databases and log files.
NetView for AIX V3R1 introduces the use of relational databases to several of
these, specifically:

− The IP topology database

− The event log

− The performance data collection database

The relational database topic is covered in detail in Chapter 3, “Database
Extensions” on page 33.

• Event configuration

When certain errors occur on the network an event will be sent to the
NetView for AIX V3R1 management host. These events are displayed via the
event display application. Remote SNMP agents will also raise events to
inform NetView for AIX V3R1 of any incidents or errors.

In NetView for AIX V3R1 a number of new features have been added to the
Event configuration.

− Enhanced User interface

− Multiple Dynamic Event Display Screens

− Larger Event Window displays

• Manager takeover (Backup manager)

With this feature any NetView for AIX V3R1 can be a Backup manager for
resources in an IP Internet network, originally managed by other NetView for
AIX systems. You can design an IP Internet network so that each manager
in your network has its own Sphere of Control (SOC).

Manager function can be provided by either AIX NetView/6000 V2R1, or
NetView for AIX V3R1, but Backup manager function, can only be provided by
NetView for AIX V3R1. If so designed, a Backup manager takes over
management functions of a Manager that for any reason goes down. As

2 Examples of Using NetView for AIX

soon as that manager is available again, the Backup manager is informed,
so it can stop his management functions, taken over earlier.

The mechanism used for this feature is the node down / node up traps, sent
by manager nodes.

• Interactions with Systems Monitor for AIX

With Systems Monitor for AIX Version 2 the addition of Segment managers
enhance the distributed management facility from within NetView for AIX
V3R1 by taking some of the functions away from NetView for AIX V3R1.

Chapter 1. Overview of NetView for AIX V3R1 3

4 Examples of Using NetView for AIX

Chapter 2. Discovery

This chapter provides a discussion of discovery as used by NetView for AIX.

2.1 What is Discovery in NetView for AIX?
The NetView for AIX discovery process is the mechanism that obtains the
network-related information and feeds the configuration to the NetView for AIX
map application.

2.2 Open Technology
There are a number of processed involved discovering non-IP devices within the
network. The open technology discovery daemon is called noniptopod and is
informed of the remote agents by netmon raising the relevant trap. This trap will
reach the noniptopod daemon if the object discovered has an IP address or is an
agent such as the LMU/2 agent for OS/2. This area is covered in the Open
technology chapter in this book.

2.3 Discovery and Polling Daemons
Within NetView for AIX there are a number of discovery and polling processes.
These are:

• Discover a new entity on the network.

• Discover new devices from a device already discovered. For example: When
a new node is discovered, this node may contain more information relating
to other devices on the network, for example additional IP devices that this
particular node can communicate with.

• Poll nodes for any status changes that may have occurred.

• Poll nodes for any configuration changes.

2.3.1 The netmon Daemon
The process that deals with the discovering of network entities NetView for AIX
is called the netmon daemon. When NetView for AIX is started for the first time
the netmon daemon will send an SNMP trap directly to the trapd daemon
specifying newly discovered entities. These entities may be devices or remote
agent software (for example, non-IP communications). The only requirement is
that the discovered entity has an IP address, (for example, 9.24.104.23).

The netmon daemon will then poll the SNMP agent for additional information.
This information includes:

• Configuration

• Topology

• Status changes

The netmon daemon has no direct communication with non-IP entities on the
network; such devices are monitored and polled via the noniptopod daemon.

 Copyright IBM Corp. 1994 5

Netmon will discover the following network objects:

• The local network segment.

• All nodes on the local segment.

• All Routers and gateways on the segment.

• All Segments or networks attached to the gateways and routers. Although
netmon will discover these entities, it will inform NetView for AIX that they
should be initially configured in an UNMANAGED state.

The following information is obtained by the netmon daemon and inserted into
the NetView for AIX object database:

System Description (sysDesc) Name and version of the system′s hardware,
software and operating system.

System Object ID (sysObjectId) Specifies the object ID for the device. This ID
is used for a identify the specific object on the
network.

Forwarding Status Indicates if the entity is acting as an IP
gateway to forward datagrams received.

IP Address table (ipAddrTable) List addressing relevant to this device.

Interface table List interface details such as token-ring cards.

System Location The physical location of the device.

System contact The system contact for this device.

If the entity on the network has been discovered, then the process flow is from
top to bottom. If any changes are made to the IP map by the network manager
then the process flow is reversed.

Figure 1 on page 6 shows these processes.

Discovery Polling
� �
│ ICMP SNMP │
│ � � │
│ │ │ │

┌─┴───┴───┴──────┴─┐
│ netmon │
│ │
└────────�─────────┘

│
┌────────(─────────┐
│ trapd │
│ │
└────────┬─────────┘

│
┌────────(─────────┐ ┌──────────────┐
│ ovtopmd ├───────. Topology │
│ │ │ Database │
└────────┬─────────┘ └──────────────┘

│
┌────────(─────────┐
│ ipmap │
│ │
└────────┬─────────┘

│
┌────────(─────────┐
│ ovw │
│ (User Interface) │
└──────────────────┘

Figure 1. NetView for AIX V3 Discovery Daemons

6 Examples of Using NetView for AIX

The next sections explain the responsibilities of each of these daemons.

2.3.2 The trapd Daemon
The trapd daemon receives traps directly from the netmon daemon during initial
discovery informing on new entities located in the network. Also netmon will
raise a trap and forward it to the trapd daemon during polling to reveal any
network status changes.

The trapd daemon will also receives traps from other internal processes and
informs netmon.

trapd will log all received traps in the log file called /usr/OV/log/trapd.log.

2.3.3 The ovtopmd Daemon
This daemon maintains the network topology database. This database holds the
netmon polling values and information relating to the network objects and their
relationships. The ovtopmd daemon generates and updates the topology
database using status information obtained by the netmon daemon.

2.3.4 The ipmap Application
The map of the entire IP network is known as the ipmap. One of the tasks of the
ipmap application is to keep the consistency of the graphical interface
information (what the user sees) with the information held in the topology
database. For example if a new node has been discovered, ipmap will then
inform the ovw application of the type of connection symbols and icons it needs
to display.

This application will be notified of any new devices that netmon discovers. It will
then look-up the SNMP object ID and display the relevant Icon, such as the
workstation Icon for the RS/6000 processor.

2.4 Address Resolution
The Address Resolution Protocol (ARP) is used to locate additional entities from
one discovered node. The discovered node may or may not hold information
relating to other connected nodes. The netmon daemon will execute an SNMP
get on the routing table MIB.

These commands may be useful in resolving routing information:

rnetstat -r <hostname>

The output of this command is similar to the following:

Destination Gateway Type Interface
default 6611ral.itso.ral.ibm remote tr0;
itso.ral.ibm.com rs60002.itso.ral.ibm direct tr0;
9.67.32 rs600010.itso.ral.ib remote tr0;
9.67.37 rs600010.itso.ral.ib remote tr0;
9.67.38 rs600010.itso.ral.ib remote tr0;
9.67.38.10 lablnm.itso.ral.ibm. other tr0;
9.67.38.89 lablnm.itso.ral.ibm. other tr0;
9.67.40 rs600010.itso.ral.ib remote tr0;
9.67.46 rs600010.itso.ral.ib remote tr0;
9.67.46 rs60005.itso.ral.ibm remote tr0;

Chapter 2. Discovery and Poll ing 7

9.67.46.10 lablnm.itso.ral.ibm. other tr0;
9.67.46.11 6611ral.itso.ral.ibm other tr0;
9.67.46.128 rs600010.itso.ral.ib remote tr0;
9.67.46.139 lablnm.itso.ral.ibm. other tr0;
9.67.46.140 lablnm.itso.ral.ibm. other tr0;
9.67.46.141 lablnm.itso.ral.ibm. other tr0;
9.67.46.152 lablnm.itso.ral.ibm. other tr0;
9.67.46.170 lablnm.itso.ral.ibm. other tr0;
9.67.46.175 lablnm.itso.ral.ibm. other tr0;
9.67.46.180 lablnm.itso.ral.ibm. other tr0;
9.67.46.187 lablnm.itso.ral.ibm. other tr0;
9.67.46.188 lablnm.itso.ral.ibm. other tr0;
127 localhost.0.0.127.in direct lo0

The route table MIB can be browsed using the NetView for AIX GUI:

• Select an object on a submap.

• Select tools->MIB Browser from the pull down menu.

• Click on mgmt followed by Down Tree.

• Click on mib-2 then Down Tree.

• Click on ip then Down Tree.

• Click on ipRouteTable then Down Tree.

• Click on ipRouteEntry then Down Tree.

• Click on ipRouteDest then Down Tree.

• Click on Start Query.

• The table will look similar to Figure 2 on page 9.

8 Examples of Using NetView for AIX

Figure 2. Browsing the Router Table MIB

2.4.1 Name Resolution
When an entity has been discovered the NetView for AIX process will attempt to
resolve the IP address into a host name by:

• A Domain Name Server service such as DNS or NIS.

• Locating the address in the /etc/hosts file

The hostname will be used as the selection name for the entity on the NetView
for AIX map.

Chapter 2. Discovery and Poll ing 9

For example, the node 9.24.104.28 has been discovered. NetView for AIX
manages to resolve this IP address into rs60002.itso.ral.ibm.com. This value now
becomes the selection name.

2.4.2 Selection Name and the Label
The purpose of the selection name is to make sure that every object has a
textual name that can be displayed through the user interface. The selection
name can be changed using NetView for AIX but this is not recommended. The
label however is displayed on the map below the icon representing the object,
this value is set initially to the selection name and can be modified by

• Select the object with the left hand mouse button.

• Select (using the right hand mouse button) - >Ed i t ->
Modify/Describe->Symbol

• Enter the new label name in the label field.

• Click on Ok.

If the IP address cannot be resolved the selection name will be set to the IP
address.

2.5 How to Configure the Discovery and Polling Options
This section describes the configuration options relating to the discovery and
polling processes within NetView for AIX.

There are a number of configuration options for this process. It is important to
get the configuration correct otherwise unnecessary network traffic will be
generated.

2.5.1 SNMP Configuration
It is very important to set-up the SNMP configuration correctly before starting the
discovery process. The objects will be discovered but if the SNMP community
name is wrong then no additional information can be obtained from the SNMP
agent running on that entity.

You may want to start NetView for AIX initially, then any incorrect requests for
MIB information, (for example, invalid community names) will appear as events.
SNMP may be updated and the NetView for AIX object database cleaned and
NetView for AIX restarted.

The SNMP configuration for NetView for AIX can be viewed or modified using the
interface. There are a number of reasons for changing the SNMP configuration.
These are summarized below:

Specific Nodes This section contains specific nodes on the network for
SNMP configuration.

IP Address wildcards This section contains IP addresses and will allow the
use of wildcards for nodes that are to be SNMP
managed.

The individual options are located in the bottom half of the screen. If these
options are set incorrectly, then any valuable SNMP information cannot be
obtained. A summary of the options:

10 Examples of Using NetView for AIX

Target The target address or hostname

Community The community name used for SNMP requests on the
nodes specified in the Target option.

Set community The SNMP agent community name that the management
agent will use to SET and MIB values. Agents are
normally configured for different get and set community
names.

timeout The timeout value for the SNMP Get or Set request. If
there is no response from the agent, the NetView for AIX
process will retry.

retry The retry value indicating the number of SNMP requests
the process will attempt before failing.

Remote Port The UDP number on the target machine where the
machine expects to receive SNMP requests. The
standard port number is 161.

Status Polling This field indicated the frequency the netmon daemon
will poll the nodes (using ping) to query the status. The
more frequent the poll the more network traffic
generated.

Figure 3 on page 11 shows a sample configuration for the SNMP agent for a
RISC System/6000 machine.

Figure 3. SNMP Configuration

Chapter 2. Discovery and Poll ing 11

The example shows that the only specific node is the loopback address
signifying the management station. For all the other nodes on the network the
Default options will be used apart from the devices located on the network
9.24.104.*

If a node on a remote segment is consistently timing out you may want to
include the segment as a separate option and increase the time-out value.

2.5.2 Topology/Status Polling Configuration
NetView for AIX discovery and polling status options and how to change these
options are described in this section.

To see the polling options do the following from the main NetView for AIX
screen:

• Select Options->Topology/Status Polling Intervals: IP...

This will show a screen similar to Figure 4.

Figure 4. Topology/Status Poll ing Configuration

Figure 4 on page 12 shows the polling options. These values inform NetView for
AIX when to activate the polling and discovery process. The options are as
follows:

Enable Polling and Discovery Settings A global on/off switch for all the Polling
and Discovery options.

Poll for Status NetView for AIX will poll nodes for status information. Nodes that
do not respond within the time scale specified in the Delete Nodes
Down for field will be Deleted from the map.

12 Examples of Using NetView for AIX

Discover New Nodes The NetView for AIX discovery process will poll existing
SNMP nodes on the network to determine new nodes, for example the
agents ARP table is examined.

Use Auto-Adjusting Polling Interval The NetView for AIX process initially polls the
existing SNMP nodes at variable intervals, as fewer new nodes are
found per polling cycle, the frequency of the polling interval will
decrease. This allows less traffic as more nodes are discovered.

Fixed Polling Interval This option specifies the polling interval for discovery of
new nodes.

Poll for configuration Changes The NetView for AIX configuration polling process
will check for any actual configuration changes on the SNMP agent.
This option will check the following information.

• Change in contact and location

• Forwarding IP packets

• Interface added

• Interface deleted

• Incorrect routing by a node

• Link address change

• Mismatch of link address

• Network mask change

• Node name change

• Object ID change

• Undetermined link address

Polling Interval The interval that netmon will use to check any configuration
changes on each managed node.

2.5.3 The Seed File
One method of populating the NetView for AIX database is to use a seed file.
This file contains a list of host names or IP addresses of SNMP agents within the
network. Some reasons for using a seed file include:

• Limit the number of management stations. This option may be useful if you
have only a certain number of critical machines in the network that you want
managed. This option also requires the auto-discovery option to be switched
off. See the example below.

• Speed up the initial discovery process. If the hostname or IP address are
located in the seed file then the netmon daemon does not have to find this
node but can get the configuration directly thus speeding up the process.

• A number of managed machines are outside the initial domain. NetView for
AIX will only discover devices up to and including the first routers; devices
beyond this point will have to be discovered manually or entered in the seed
file.

The format of a seed file is a list of hostnames, IP addresses or IP address
ranges within the management network with each device on a separate line.
Routers beyond the first domain are useful additions to the seed file. This will
allow NetView for AIX to discover the devices located on the other segments. As
long as the router has ICMP traffic option enabled.

Chapter 2. Discovery and Poll ing 13

The following example shows how, with the use of a seed file, the discovery
process is changed. The examples describe how to:

• Clear the NetView for AIX databases and restart the discovery with no seed
file.

• Use the existing map and add the routing devices to the database using a
seed file.

• Use a seed file to create a new map showing only selected router devices.

2.5.3.1 Initial Map Generation
The NetView for AIX database must be cleared to show this example. To do this:

• From the command line type smit nv6000

• Select Maintain.

• Select Clear databases.

• Select Clear topology database.

Note: This will kill all user interface windows, clear all topology databases
plus restore default IP discovery and polling defaults.

• Select Done.

The NetView for AIX databases are now cleared, ready for the discovery process
to begin. Another way to clear the databases is via the following ″Restart
automatic map generation″ smit option.

To restart the map generation process:

• Select Control from the smit nv6000 screen

• Select Restart automatic map generation

Note: This will kill all user interface windows, clear all topology databases,
the trapd.log, ovevent.log and ovevent.log.BAK and restore default IP
discovery and polling defaults.

Figure 5 on page 15 is the smit output from this action.

14 Examples of Using NetView for AIX

Figure 5. SMIT Panel After Restart Automatic Map Generation

• Exit from smit.

• Start the NetView for AIX End User Interface (EUI) and other daemons via
smit or via a command such as:

nv6000 -m somemapname

In the following example, the following command was used, with a mapname
of ITSO1:

nv6000 -m ITSO1

The initial discovery process has only found devices in the current segment.
(See Figure 6 on page 16).

Notice that the map shows the local segment and all the router and gateway
devices. The lighter colored icons signify devices attached to the routers and
gateways; these are initially unmanaged.

Chapter 2. Discovery and Poll ing 15

Figure 6. The NetView for AIX Map on Initial Startup

Figure 7 on page 17 shows the devices discovered in the local network. We will
see later how this changes when we restrict discovery via a seed file in
conjunction with automatic discovery being disabled.

16 Examples of Using NetView for AIX

Figure 7. Local Segment with No Seedfile and Automatic Discovery On

2.5.3.2 Discovery of Router′s IP Addresses in Seed File
Now we will include two router devices in a seed file and inform netmon that
they will require network management from NetView for AIX.

• Using an editor (vi) create a seed file with the following IP addresses for the
known routers on the network. The file created is called /u/paul/router_seed:

9.24.1.2
9.19.143.10

We would like to create a new database using the seed file, so clear the
topology database as previously discussed in 2.5.3.1, “Initial Map Generation” on
page 14.

To restart netmon using the new seed file:

• From the AIX command line type smit nv6000.

• Select Configure.

• Select Set options for daemons.

• Select Set options for topology, discovery and database...

• Select Set options for netmon daemon.

Chapter 2. Discovery and Poll ing 17

• Enter /u/paul/router_seed in the ′Load seed file from′ field.

• Select Do followed by Done.

Then, the following command was used to restart the NetView for AIX EUI from
the command line:

nv6000 -m ITSO1

Figure 8. The NetView for AIX Map After the Seed File

By adding these routers to the seed file a number of new devices have appeared
on the map. (See Figure 8). The light colored icons signify an unmanaged
device. You can see that the new routers have been discovered and any
devices discovered in the path to the new router are also represented as icons.

Figure 9 on page 19 again shows the devices discovered in the local network,
since the router We will see later how this changes when we restrict discovery
via a seed file in conjunction with automatic discovery being disabled.

18 Examples of Using NetView for AIX

Figure 9. Local Segment with Seedfile and Automatic Discovery On

2.5.3.3 Creating a Map with Only the Router Devices in the Seed
File
The final example shows how to inform netmon that it should only discover and
inform IPMAP of the router devices on the network. The process is explained
below:

Once again, we would like to create a new database using the seed file, so clear
the topology database as previously discussed in 2.5.3.1, “Initial Map
Generation” on page 14.

To turn OFF the Auto-discovery process:

• Using smit/control, stop the auto-discovery daemon (if not already stopped):
netmon.

• Use the command:

nmpolling

• Turn the Discover-New-Nodes to off as shown in Figure 10 on page 20.

Chapter 2. Discovery and Poll ing 19

Figure 10. Turning Off Discover New Nodes. Note: this wi l l done system-wide, for al l
operators/maps.

Use an editor to create a seed file containing the router devices. The file is
called router_only.

9.24.1.2
9.19.143.10
9.24.1.4
9.19.141.241
9.19.129.202
9.19.129.132

To Restart netmon using the created seed file do the following:

• From the AIX command line type smit nv6000.

• Select Configure.

• Select Set options for daemons.

• Select Set options for topology, discovery and database...

• Select Set options for netmon daemon.

• Enter /u/paul/router_only in the ′Load seed file from′ field..

• Select Do followed by Done

• Quit from Smit.

20 Examples of Using NetView for AIX

• Type in nv6000 -m somemapname or use smit/control to bring up your
mapname.

The following command was used to restart the NetView for AIX EUI from the
command line:

nv6000 -m ITSO1

The new seed file will be processed and the routers are displayed on the map.

The screen looks like Figure 11. The map shows the router devices and objects
connected to these routers. Again the light colored icons signify unmanaged
nodes.

If an object is the seed file cannot be located in the network a message will be in
the /usr/OV/log/netmon.trace file.

Figure 11. Auto Discovery Turned Off and Using Seed File

Figure 12 on page 22 shows the devices discovered in the local network; only
the router and the manager′s host (rs60003) is discovered since when we
restricted discovery via a seed file and disabled automatic discovery.

Chapter 2. Discovery and Poll ing 21

Figure 12. Local Segment with Seedfile and Automatic Discovery Off

2.6 More About the Discovery Process
The only objects discovered by the netmon process initially will be as follows:

• IP Networks, Gateways, and Routers on the Internet Map.

• Segments, Gateways, Routers, Hubs, and Bridges on the Network submaps.

• Hosts, Gateways, Routers, Hubs, and Bridges on the Segment Maps.

The relevant connections are be made by NetView for AIX for all the objects
discovered. If any of the objects such as the hosts appear as incorrect objects on
the map then the predefined value for that object may be incorrectly defined in
the file oid_to_type file, and/or the oid_to_sym file.

The header and man pages for these files can be found on the NetView for AIX
management system and in the NetView for AIX Programmers Reference Guide,
SC31-6239. The following section summarizes the contents of these files:

22 Examples of Using NetView for AIX

2.6.1.1 The oid_to_type File
This file, found in /usr/OV/conf, is used by netmon to determine the correct IP
topology attributes for the discovered object. Each Object discovered will have
an Object ID associated with it, as one of its MIB values. To check a valid object
ID for a specific device do the following: (6611ral is a valid ID in this example′s
IP network)

snmpget -c public 6611ral .1.3.6.1.2.1.1.2.0

The output shows the object Id as:
&.iso.org.dod.internet.private.enterprises.ibm.ibmprod.ibm6611

 which is resolved in dotted decimal form to:

 .1.3.6.1.4.1.2.6.2

The MIB browser could be used instead of the above snmpget.

The format of /usr/OV/conf/oid_to_type consists of four fields separated by
colons. The fields contain:

• SNMP object Id

• The vendor (IBM, Sun, DEC)

• The agent type, such as IBM RS/6000 or HP9000/8000

• A set of flags controlling the topology attributes. Some of the flags are
shown below:

− G - Gateway(Router) device

− B - Bridge or simple repeater

− H - Multi-port repeater or Hub

− I - Treat the device as if no SNMP support is available.

− T - Terminal Server device.

− U - Create the device in an UNMANAGED state.

As seen in the file /usr/OV/conf/oid_to_type, the 1.3.6.1.4.1.2.6.2 value has the
options:

IBM:IBM 6611:G

This shows that when this type of device is discovered the discovery process
knows that it is an IBM 6611 router.

The Object Id is also used to resolve the object ID into a symbol to represent this
device on the Map. This file is called oid_to_sym and it is found in
/usr/OV/conf/C. This file contains three fields:

• Object ID

• Class Member

• The Class member Name

The IBM 6611 router object ID is shows as follows:

1.3.6.1.4.1.2.6.2:Connector:Gateway
 # IBM 6611 Router Processor

Chapter 2. Discovery and Poll ing 23

This shows that the Icon that will appear on the map will be a gateway of type
connector. If we look at the Legend by selecting from the NetView for AIX main
EUI menu Help..Legend the relevant icon that the IBM 6611 refers to is displayed.

If a different icon is required, then this file can be modified. To add a new Icon to
the legend see the NetView for AIX Programmers Guide, SC31-6238.

Figure 13. The Legend

2.6.2 Discovery Agent
Netmon uses the ICMP protocol to maintain the status of the managed nodes. If
the NODE does not support the SNMP protocol then netmon will gain information
using ICMP network Mask requests. See the file /usr/OV/conf/ovsnmp.conf

The options for running netmon are as follows:

-d Disable system checking. Netmon invokes a script called
/usr/OV/bin/nmcheckconf to confirm the management system is
correctly configured.

-J Causes netmon to attempt to speed up the process of discovering
new nodes at the expense of limited broadcast traffic. When a new
Node or network is discovered then Netmon causes the first capable
node to broadcast ICMP echo requests. Thereafter while the node
remains on the map netmon causes no additional broadcasts to be
generated there.

This option should only be used where very few nodes support SNMP
or where the use of proxy ARP is prevalent.

-m Sets the initial trace mask to tracemask. The default is No.

-s Refer to 2.5.3, “The Seed File” on page 13.

24 Examples of Using NetView for AIX

-S Discover a secondary address for devices, such as routers or
gateways, that will support secondary addressing.

-u Supports additional discovery and management of IP nodes that exist
in an IP network and are connected to the network that does not have
an explicit IP address.

The trace mask values are:

• 0 Turn tracing off
• 1 Trace ICMP echo requests
• 2 ICMP echo requests and timeoutes
• 4 SNMP requests
• 8 SNMP requests and timeouts
• 16 traps generated
• 32 traps received

For example, when using netmon -M 2 The output from this command shows:

8079:sending Trap to 9.24.104.55 op=AT req=ARP
Output from the command for the 16
Traps raised:
UP Event: 9.24.104.123 (rs600011.itso.ral.ibm.com)

The netmon performance checks poll SNMP agents for the following
configuration. The config file is found in /usr/OV/conf/ovsnmp.conf.

Changes are reported for the following:

• Arp Tables

• Broadcasts

• SNMP Requests

• What type of device will be discovered

• Why devices may not be discovered

• TCP/IP communication on network is necessary for discovery

2.7 Problem Determination
This section lists some commands that are useful in determining why some
network objects may not being recognized by NetView for AIX

ping hostname Sends ICMP packet to the hostname. If the node is not already
discovered by netmon, a ping to the node will start the process before
the next netmon poll.

snmpwalk hostname Examines the MIB tree by stepping through each branch in
turn.

traceroute Prints the route that the IP packets will take to a network host. (Note:
This is a command not distributed with a particular product. It is
available via various user disks).

Shared IP address If netmon discovers two or more nodes with the same IP
address then it will begin to display and remove the Icon. If this is
the case it is wise to switch on the -S option on netmon which will
allow shared IP addresses. Note: This will increase network traffic.

Chapter 2. Discovery and Poll ing 25

netmon -M To switch on/off the tracing facility with netmon, this is a very useful
debugging tool.

If some nodes appear on the map having strange IP addresses and do not
appear to be connected with the main IP network, this may be due to an
incorrect subnet mask setting. NetView for AIX can only draw networks correctly
if the following objects have only one subnet mask per class.

• Gateways and routers

• The manager system

• Any nodes located in a seed file

Refer to NetView for AIX online help, online documentation and other standard
approaches for assistance in problem determination.

2.7.1 Example of Online Help
The following figures in this section show using the online Help support of
NetView for AIX to investigate ″discovery″.

NetView for AIX help is accessed via the main EUI pull-down, clicking on NetView
for AIX Library.

Figure 14. Accessing NetView for AIX Help. Heading toward NetView for AIX Library, in
this example.

26 Examples of Using NetView for AIX

In this example, we wished to investigate ″discovery″ as found in the NetView for
AIX Administrator′s Reference.

Figure 15. Selecting NetView for AIX and Administrator ′s Reference

Filling in the panel as indicated above and clicking on Search results in the
following figure.

Chapter 2. Discovery and Poll ing 27

Figure 16. Showing 15 Found Occurrences

Selecting the 15 Administrator′s References and clicking on Open results in the
following figure.

28 Examples of Using NetView for AIX

Figure 17. Panel for Full Text of Selected Document

Clicking on Search brings forward the following panel.

Chapter 2. Discovery and Poll ing 29

Figure 18. Setting Up Show Search Panel

Clicking on Show Search Panel results in being able to search various
occurrences of the search operand via the buttons at the bottom of the following
figure.

30 Examples of Using NetView for AIX

Figure 19. Search Panel for Fulltext of Selected Document

In this example, we use the search buttons to find the topic surrounding the
discussion of discovery and turning netmon discovery on and off and end up with
the information in the following figure.

Using online Help and keyword search can be of much value to an operator or
application programmer involved with NetView for AIX.

Chapter 2. Discovery and Poll ing 31

Figure 20. Search Panel for nmpol l ing Portion of Selected Document

2.8 Some Useful Hints
Following are some useful commands to use when the discovery process is not
discovering certain devices on the network.

• ovstatus netmon checks the status of the discovery daemon.

• getcommunity `hostname` returns the local community name.

• ping <hostname> pings the device.

• snmpwalk -c public nodename steps through the MIB table for a particular
node.

• ovtopodump -v lists the contents of the topology database.

• ovobjprint -s nodename reports the contents of fields for the nodename from
the object database.

• host nodename or IP address resolves the hostname into an IP address or an
IP address to hostname. Useful in name resolution diagnosis.

32 Examples of Using NetView for AIX

Chapter 3. Database Extensions

This chapter provides a summary of NetView for AIX database support. Refer to
IBM NetView for AIX Database Guide, SC31-7190 for more information on this
topic.

3.1 Overview of the Databases
Before discussing SQL relational databases in NetView for AIX V3R1, we should
first explain how databases are architected in NetView for AIX.

NetView for AIX uses three different databases:

• A database to load SNMP data which has been collected via the snmpCollect
command: the snmpCollect database.

• A database to collect alerts forwarded to S/390 NetView: the tralertd
database.

• A database to store information about the managed instances: the openview
database.

All these databases are located in the path /usr/OV/databases.

In addition, traps which are processed by NetView for AIX are located in a flat
file called trapd.log in the directory /usr/OV/log. We mention this, since we will
discuss moving trap data into SQL data later in this chapter.

3.1.1 SnmpCollect
The snmpCollect database is located in directory
/usr/OV/databases/snmpCollect. Each data collection is placed in two files:

mibobjectname.i
mibobjectname.i!

Where mibobjectname is the name of the MIB variable being collected and i is the
instance ID. The file suffixed ″!″ contains detailed information about the object
and instance, plus some formatting information. The other file contains the
collected data.

The data collected in these files is not readable by the user directly. It has to be
extracted into a flat file using program snmpColDump or SMIT option
NetView/6000->Control->Dump Data Collected by snmpCollect.

3.1.2 Tralertd
Database tralertd, located in /usr/OV/databases/tralertd, contains a copy of all
the traps converted into an NMVT and intended to be sent to a S/390 NetView
system. This database is internal to NetView for AIX and is not readable by the
user.

 Copyright IBM Corp. 1994 33

3.1.3 The trapd.log File
The trapd database, file /usr/OV/log/trapd.log, contains all the traps received by
trapd daemon. Information contained in this file is:

• Number of seconds since January 1, 1970 (midnight)
• Type of trap. This is a numeric field that represents the general category of

the trap: Threshold, Topology, Error etc. You can find the possible values
listed on the NetView for AIX Event Configuration panel.

• Date and time the trap was received, (in form: year-month-day time).
• Node which is the subject of the trap (note: not the origin of the trap, since

some traps are generated internally by NetView for AIX to report problems
found during network polling).

• Trap source. This is a single character that represents the type of agent that
generated the trap. You can find the possible values listed on the NetView
for AIX Event Configuration panel.

• Description. Textual description of the event indicated by the trap.

3.1.4 Openview
The ″openview″ database is, in fact, various sets of information. The end-user
views this information primarily via the End User Interface (EUI) in graphic form.
However, the data the user views has its base via a set of ″databases″.

The openview database is split into four separate files, which are described in
Table 1.

Figure 21 on page 35 illustrates the relationships between these different
components of the database, and the processes that bind them together.

Table 1. Usage of the Databases. The Openview files.

Database Description

IP topology
(IP)

The netmon process discovers an IP-capable device and provides
IP topology information to the ovtopmd daemon. Ovtopmd stores
the IP topology information in the IP topology database (which, in
fact is many separate, related files) and creates IP objects in the
ovwdb database.

gtm (non-IP) A non-IP agent (such as LNM for AIX and AIX LMU/6000) sends
non-IP topology information to the gtmd daemon. The gtmd
daemon stores this information into the gtm database and, also,
creates objects in the ovwdb database.

ovwdb The ovwdb (sometimes known as the ″object″ database) contains
the reference of all the instances which are created by netmon and
the gtm daemon. In addition, user tasks create instances via
NetView for AIX APIs.

map Contains information resulting in graphical representation of the
objects (symbols and submaps). It is filled by the ipmap application
(IP Topology) using information from the IP topology database and
by the xxmap application using information from the gtm database.
In addition, other programs may create and maintain map objects
via the NetView for AIX APIs.

34 Examples of Using NetView for AIX

Figure 21. NetView for AIX Topology Databases and APIs

At base installation of NetView for AIX, the openview files are, by default, flat
files contained in the directory /usr/OV/databases/openview.

Table 2 on page 36 lists the commands which extracts the main information
from the openview databases. These commands do not require SQL database,
they are normal commands distributed as part of NetView for AIX.

Chapter 3. Database 35

Note

In AIX NetView/6000 V2R1, the IP topology database could be either in a flat
file (default) or in an SQL database; however, only the Ingres SQL database
could be used. In NetView for AIX this support has been extended to other
SQL databases.

Table 2. List of the Commands

Command Description

ovtopodump Returns the contents of the IP topology database. Information
selected is:
• Class, Object Id, Object, Status, IP Address

ovobjprint Returns the contents of the ovwdb database. Information selected
are fields related to an object:
• Field Id, Field Name, Field Value

ovmapdump Returns the contents of map database. Information selected is:
• Submap

• Submap id, Name, Policy, Parent, Layout
• Object

• Object id, Status, Compound status
• Symbol

• Symbol id,
• Related to Object-id
• Part of Submap-id
• Variety (icon or connection)

3.1.5 Extracting Information from the Flat File Database
Using commands ovtopodump (see Figure 22 on page 37), ovobjprint (see
Figure 23 on page 38), and ovmapdump (see Figure 24 on page 39), we will
illustrate the way to answer a question such as ″How is a particular node (we
chose rs60001) configured from an IP point of view?″. This is shown below. As a
result we will be able to describe the node as shown in Table 3 on page 38.
Later, we will make comparison with using SQL queries to answer the same
question.

Figure 22 on page 37 illustrates the result of the ovtopodump command.

36 Examples of Using NetView for AIX

[rs60002:root] / > ovtopodump
CLASS OBJECT ID OBJECT STATUS IP ADDRESS
TOPOINFO 184 IP Internet
NETWORKS 189 T9.24.104U Marginal 9.24.104.0

227 T9.67.32.64U Down 9.67.32.64
229 T9.67.38.64U Down 9.67.38.64
231 T9.67.46U Down 9.67.46.0
237 9.24.1 Marginal 9.24.1.0
239 9.24.96 Marginal 9.24.96.0

5596 128.1.1 Unmanaged 128.1.1.0
5052 150.0.49.32 Up 150.0.49.32
5055 150.0.49.48 Up 150.0.49.48
5065 150.0.49.16 Up 150.0.49.16
5069 150.0.52 Up 150.0.52.0
5077 150.0.49 Up 150.0.49.0
5081 150.0.51 Up 150.0.51.0

SEGMENTS 190 9.24.104.Segment1 Marginal
241 9.67.32.64.Segment1 Down
242 9.67.38.64.Segment1 Down
243 9.67.46.Segment1 Down
244 9.24.1.Segment1 Marginal
245 9.24.96.Segment1 Marginal

5598 128.1.1.Segment1 Unmanaged
5058 150.0.49.32.Segment1 Up
5059 150.0.49.48.Segment1 Up
5072 150.0.49.16.Segment1 Up
5073 150.0.52.Segment1 Up
5084 150.0.49.Segment1 Up
5085 150.0.51.Segment1 Up

NODES 186/185 rs60002.itso.ral.ibm.com Up 9.24.104.28
188/187 rs60003.itso.ral.ibm.com Up 9.24.104.23

T194U/193 Trs60001.itso.ral.ibm.comU Up T9.24.104.26U
T194U/228 Trs60001.itso.ral.ibm.comU Down T9.67.32.85U
T194U/230 Trs60001.itso.ral.ibm.comU Down T9.67.38.71U
T194U/232 Trs60001.itso.ral.ibm.comU Down T9.67.46.29U
204/203 rs60005.itso.ral.ibm.com Up 9.24.104.25
204/247 rs60005.itso.ral.ibm.com Down 9.67.32.86
204/248 rs60005.itso.ral.ibm.com Down 9.67.38.67
206/205 rs60004.itso.ral.ibm.com Up 9.24.104.27

Figure 22. Result of ovtopodump Command

From the result of this command, we can see, as an example, that node rs60001
which is rs60001.itso.ibm.ral.com (objid=194 in ovw database) has four
interfaces.

To find out additional information regarding the interfaces, we can issue the
command ovobjprint and request the information for a specific IP node as shown
via the -s option:

Chapter 3. Database 37

[rs60002:root] / > ovobjprint -s rs60001.itso.ral.ibm.com
OBJECT: T194U

 FIELD ID FIELD NAME FIELD VALUE
 10 Selection Name ″Trs60001U.itso.ral.ibm.com″
 11 IP Hostname ″rs60001.itso.ral.ibm.com″
 14 OVW Maps Exists 8
 15 OVW Maps Managed 8
 19 IP Status Marginal(3)
 22 isIPRouter TRUE
 29 vendor IBM(1)
 39 isNode TRUE
 41 isComputer TRUE
 42 isConnector TRUE
 43 isBridge FALSE
 44 isRouter TRUE
 45 isHub FALSE
48 isWorkstation TRUE
63 isIP TRUE
64 isSNMPSupported TRUE

 66 SNMP sysDescr ″IBM RISC System/6000
Machine Type: 0x0010 Processor id: 000181471000
The Base Operating System AIX version: 03.02.0000.0000
TCPIP Applications version: 03.02.0000.0000 ″

 67 SNMP sysLocation ″″
 68 SNMP sysContact ″Rob Macgregor′ s V3.2.5 Rob is in: BB112 x1-2325″
 69 SNMP sysObjectID ″ 1 . 3 . 6 . 1 . 4 . 1 . 2 . 3 . 1 . 2 . 1 . 1 . 2 ″
 70 SNMPAgent IBM RS/6000(1)
 77 TopM Interface Count 4
 83 TopM Interface List ″tr2; Up 9.24.104.26 255.255.255.0 0xT10005AA8D769U ieee 802.5 tokenRing″

″et0; Down 9.67.32.85 255.255.255.192 0xT02608C2EB97CU ieee 802.3 csmacd″
″tr0; Down 9.67.38.71 255.255.255.192 0xT10005AA88793U ieee 802.5 tokenRing″
″tr1; Down 9.67.46.29 255.255.255.192 0xT10005AC94085U ieee 802.5 tokenring″

 97 XXMAP Protocol List ″IP″
 165 SMhasSysmon TRUE
 191 IP Name ″rs60001.itso.ral.ibm.com″
 254 default IP Symbol List 14

17
18
128
129
133
134
146
147

Figure 23. Result of ovobjprint Command

With the information we have collected, and knowing how the IP subnet mask
operates, we can build the following table:

Table 3. Node rs60001. Networks to which rs60001 is connected.

IP Interface ovw
Interface
objid

IP Mask IP Network ovw
Network
objid

Physical
Address

9.24.104.26 193 255.255.255.0 9.24.104 189 10005AA8D769

9.67.32.85 228 255.255.255.192 9.67.32.64 227 02608C2EB97C

9.67.38.71 230 255.255.255.192 9.67.38.64 229 10005AA88793

9.67.46.29 232 255.255.255.192 9.67.46 231 10005AC94085

To obtain the IP Network field above, we applied the network mask to the IP
interface address.

The above information will be shown later (see Figure 34 on page 56) as the
result of an SQL query.

The command ovmapdump will give us information about the relationship between
symbols, submaps and objects. An example of information from ovmapdump is
in Figure 24 on page 39 and provides the following information:

38 Examples of Using NetView for AIX

. T1U Object 194 (rs60001) is represented by symbol 14 in submap 2

. T2U Object 194 has an associated submap, the submap 13

. T3U Object 193 (rs60001:tr0;) is contained in submap 13, its parent (the
node) is object 194 (. T2U). That means interface rs60001:tr0; is part of node
rs60001.

[rs60002:root] / > ovmapdump
ELEMENT MAP NAME PERMISIONS CREATION TIME
Map default Read/Write Fri Mar 18 08:36:38 1994

 ELEMENT ID NAME POLICY PARENT LAYOUT
Submap 40 IPMap - Segment:9.67 Shared 243 Ring
Submap 7 IPMap - Network:9.67 Shared 231 Point-to-Point
Submap 2 IP Internet Shared 184 Point-to-Point
Submap 6 IPMap - Network:9.67 Shared 229 Point-to-Point
Submap 10 IPMap - Segment:9.24 Shared 190 Ring
Submap 41 IPMap - Segment:9.67 Shared 242 Ring
Submap 5 IPMap - Network:9.67 Shared 227 Point-to-Point
Submap 42 IPMap - Segment:9.67 Shared 241 Bus

. T2USubmap T13U rs60001 Shared T194U Row Column

ELEMENT ID OBJECT STATUS COMPOUND STATUS
Object 194 Unknown Marginal

 ELEMENT ID LABEL OBJECT SUBMAP VARIETY
. T1USymbol T14U rs60001 T194U T2U Icon
 Symbol 18 rs60001 194 10 Icon
 Symbol 128 rs60001 194 7 Icon
 Symbol 129 rs60001 194 40 Icon
 Symbol 133 rs60001 194 6 Icon
 Symbol 134 rs60001 194 41 Icon
 Symbol 146 rs60001 194 5 Icon
 Symbol 147 rs60001 194 42 Icon
. T3USymbol 19 tr2; T193U T13U Icon
 Symbol 21 tr0; 230 13 Icon
 Symbol 22 tr1; 232 13 Icon
 Symbol 20 et0; 228 13 Icon

Figure 24. Command ovmapdump

3.2 What Database Support is New in NetView for AIX?
NetView for AIX allows use of RDBMS (Relational DataBase Management
Systems) for the following databases:

• IP Topology

• snmpCollect (MIB data collection)

• The event log (trapd daemon)

The relational database systems supported for these databases are:

• Ingres (IP Topology support for this was available in V2)
• DB2/6000
• Informix
• Oracle
• Sybase

The methodology of implementing RDBMS support in NetView for AIX differs with
each particular NetView for AIX database (IP topology, trapd, and snmpcollect).

• IP topology SQL database

Ovtopomd can store data either in a flat file (default option) or in a RDBMS.
You make the choice when configuring the ovtopmd daemon. Performance
considerations and usefulness of SQL reports are the two criteria for such a
choice.

Chapter 3. Database 39

The first way to use RDBMS for ovtopmd is to make ovtopmd output its data
directly into SQL tables (either local or remote database system). This is an
online process.

The second way to use RDBMS for ovtopmd, is to make ovtopmd put its data
into flat files (default option). Then, at a user-chosen time, convert data from
flat files to SQL tables, this option could be automated using ″cron″
mechanism. This is an offline process.

A third way to use RDBMS for ovtopmd could be:

 1. Use the flat file option and let ovtopmd discover the network.
 2. Stop ovtopmd.
 3. Convert the IP topology flat file into SQL tables.
 4. Configure ovtopmd to use RDBMS.
 5. Start ovtopmd.

Why would you do this? One reason would be to improve performance
during the discovery process.

• trapd and snmpCollect

Trapd and snmpCollect continue to use flat files for logging, as for previous
NetView for AIX releases. The RDBMS support in NetView for AIX allows
conversion of trapd and snmpCollect operational data from flat files to SQL
tables for further analysis using SQL facilities. This is an offline process.
For further information, refer to IBM NetView for AIX Database Guide,
SC31-7190.

3.3 Configuration Steps
We tested the SQL database environment with both Oracle and Informix RDBMS.

For Oracle IP topology SQL support, we tested using both a local and a remote
data server configuration. For Informix IP topology SQL support, we tested only
a local data server configuration.

 Note

AIX SystemView NetView/6000 Database Guide, SC31-7190 recommends using
NetView for AIX with a remote database server rather than with a local
database server for performance reasons.

Note that although client/server database configurations are supported this does
not mean that multiple NetView for AIX images may share one database.

We will look at some examples of supported and unsupported configurations.
Figure 25 on page 41 shows a supported remote server RDBMS.

40 Examples of Using NetView for AIX

┌──────────────────┐
│ RISC System/6000 │
│ System-A │
│ AIX NetView/6000 │
│ │
│ RDBMS Client │
└──────�───────────┘

│
│
│
│ ┌──────────────────┐
│ │ RISC System/6000 │
└─────. System-C │

│ │
│ │
│ RDBMS Server │
└──────────────────┘

Figure 25. Supported Remote Server RDBMS

The IP Topology SQL tables cannot be shared by multiple clients, nor can a
single database server have multiple copies of the databases. So the
configuration in Figure 26 on page 41 would not be valid.

┌──────────────────┐ ┌──────────────────┐
│ RISC System/6000 │ │ RISC System/6000 │
│ System-A │ │ System-B │
│ AIX NetView/6000 │ │ AIX NetView/6000 │
│ │ │ │
│ RDBMS Client │ │ RDBMS Client │
└──────�───────────┘ └───────────�──────┘

│ │
│ │
│ │
│ ┌──────────────────┐ │
│ │ RISC System/6000 │ │
└─────. System-C Z─────┘

│ │
│ │
│ RDBMS Server │
└──────────────────┘

Figure 26. Unsupported Remote Server RDBMS

Note, however, that the snmpCollect and event log database tables can contain
merged data from different NetView for AIX sources. For IP Topology, each
client would need its own server:

Chapter 3. Database 41

┌──────────────────┐ ┌──────────────────┐
│ RISC System/6000 │ │ RISC System/6000 │
│ System-A │ │ System-B │
│ AIX NetView/6000 │ │ AIX NetView/6000 │
│ │ │ │
│ RDBMS Client │ │ RDBMS Client │
└──────�───────────┘ └──────�───────────┘

│ │
│ │
│ │
│ ┌──────────────────┐ │ ┌──────────────────┐
│ │ RISC System/6000 │ │ │ RISC System/6000 │
└─────. System-C │ └─────. System-D │

│ │ │ │
│ │ │ │
│ RDBMS Server │ │ RDBMS Server │
└──────────────────┘ └──────────────────┘

Figure 27. Supported Remote Server RDBMS

Using RDBMS within NetView for AIX requires some knowledge and/or access to
database administration. This important matter cannot be ignored. For
example, configuration changes must be made in agreement with the database
administrator:

• Size of the database
• Recovery matters and other considerations such as how to resolve

exceptional situations such as filling up the SQL database

At least five steps are necessary before starting to use the RDBMS in NetView
for AIX:

 1. Configure the AIX system for use of the RDBMS.
 2. Create the database.
 3. Specify which RDBMS is the default one for NetView for AIX.
 4. While configuring NetView for AIX, specify whether ovtopmd (IP topology

database daemon) will use SQL tables or flat files (default).

trapd and snmpCollect are not configured as SQL, since the RDBMS support
is an offline process.

 5. Create the SQL tables.

You should refer to the particular RDBMS installation and customization
documentation and have access to AIX SystemView NetView/6000 Database
Guide, SC31-7190 prior to the following steps.

3.3.1 Configuration of the AIX System for Use of RDBMS
Assuming that the RDBMS is already installed on the system, you have to check
the following three points to use RDBMS with NetView for AIX:

 1. Set the environment variables on the client and server systems, if both are
being used. Otherwise, set the environment variables only the server.

Figure 28 on page 43 shows the additions we made to $HOME/.profile to set
the environment variables needed for the two databases we used (using
Korn shell).

42 Examples of Using NetView for AIX

oracle database
SID=I because of Transmission Network Manager/6000 database
export ORACLE_SID=I
export ORACLE_HOME=/usr/oracle
export PATH=$PATH:$ORACLE_HOME/bin
informix database
export INFORMIXDIR=/usr/informix
export SQLEXEC=$INFORMIXDIR/lib/sqlturbo
export PATH=$PATH:/$INFORMIXDIR/bin

Figure 28. Setting the AIX Environment Variables. These variables would be set on both
client and server.

 Note

The sqlturbo refers to the Informix Online Server only.

 2. Add port definitions to /etc/services to allow remote database access (only if
the server is on a separate machine). Refer to the documentation for the
particular database being used.

 3. Start the database daemons in the AIX system (refer to your database
documentation for details).

3.3.2 Create the Database
Using the create command, specific for each RDBMS, create the database in
agreement with your database administrator′s specifications.

In our example we had already installed Oracle for AIX Transmission Network
Manager/6000. Thus we used the same physical database for both products; we
did not have to create a specific database for NetView for AIX.

For Informix, we created a database using the dbaccess command. We had to
create it with log mode ANSI as shown:

] ^
dbaccess - -
> create database openview with log mode ansi;

Database created

>
_ `

3.3.3 Specifying Default RDBMS System
Our second step is to define which default RDBMS will be used by NetView for
AIX. This is done by filling in the screen found under NetView for AIX SMIT
menus in: Configure → Configure relational database.

The database entered here will be the default for all requests for which a
Relational Database Management System is used. For example, when we later
issue the command to archive snmpCollect data using the nvColToSQL command,
we do not need to specify the RDBMS in use.

In this example we configure NetView for AIX (running on machine rs60002) to
use remote database server on machine rs60001. In order to achieve this

Chapter 3. Database 43

configuration, orasrv (Oracle communication) has to be started on machine
rs60002.

Note that ″S I D = I ″ allows NetView for AIX to share the same database as the one
used by TNM/6000:

] ^
Configure relational database

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Database name: oracle +
Database server name: [rs60001]
SID (only for Oracle database): [I]
log file: [/usr/OV/log/dblog]
Trace file: [/usr/OV/log/dbtrace]
Tracemask: [1] #

_ `

The second example (below) shows how to configure NetView for AIX to use
Informix in a local configuration. Note that the Database server name field is left
blank signifying a local server.

] ^
Configure relational database

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Database name: informix +
Database server name: []
SID (only for Oracle database): []
log file: [/usr/OV/log/dblog]
Trace file: [/usr/OV/log/dbtrace]
Tracemask: [1] #

_ `

3.3.4 Specify that ovtopmd Will Use a Relational Database
This step can be skipped if the flat files (default) are to be used by the daemon
ovtopmd.

 Note

This option was already existing in Version 2. In Version 2, the RDBMS could
only be Ingres. In Version 3, the Relational Database will be the one
selected in the previous step.

This will be found under NetView for AIX menus: Configure → Set options for
topology, discovery, and database daemons → Set options for ovtopmd.

] ^
Set Options for ovtopmd daemon

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Do you want to use an SQL relational database? [yes]

_ `

44 Examples of Using NetView for AIX

3.3.5 Creation of SQL Tables in Openview Database
The last step is the creation of the SQL tables for the three different uses:

 1. IP Topology data
 2. traplog data
 3. snmpCollect data

Note that all the tables reside in the one database, named ″openview″.

3.3.5.1 Creating IP Topology SQL Tables
Table 4 shows specific command to create SQL tables depending of which
RDBMS is used. To create the SQL table issue the specific command with root
authority. Using the default parameters set up during step 1: 3.3.3, “Specifying
Default RDBMS System” on page 43, only the flags -c and -v are necessary.

Using Oracle, the command to issue is oc_ovtoposql -c -v.

] ^
[root:rs60002] / > oc_ovtoposql ?
Usage: oc_ovtoposql {-c|C|D} [-v] [-U DB userid [-P DB password]] [-S server]

-c Create the topology Oracle SQL tables.
-C Clear the topology Oracle SQL tables.
-D Drop the topology Oracle SQL tables.
-v Verbose mode.
-U DB userid Oracle database owner login id.
-P DB password Oracle database owner login password.
-S server Server connect string <server_node:ORCALE_SID>

_ `

Note that the same command will be used to clear the database (-C option) or to
drop it (-D option).

Table 4. Commands for Creation of SQL Tables

Database Command Flags

DB2/6000 db2_ovtoposql -c -v

Informix in_ovtoposql -c -v

Ingres ovtoposql -c -v

Oracle oc_ovtoposql -c -v

Sybase bin/sy_ovtoposql -c -v

Chapter 3. Database 45

] ^
[root:rs60002] > in_ovtoposql -c -v
Using default database openview.
Connecting to database openview.
Creating table networkclass.
Creating unique index xnetworkclass on networkclass.
Creating table segmentclass.
Creating unique index xsegmentclass on segmentclass.
Creating table nodeclass.
Creating unique index xnodeclass on nodeclass.
Creating table interfaceclass.
Creating unique index xinterfaceclass on interfaceclass.
Creating table topoinfo.
Creating table classtable.
Creating table objectable.
Creating unique index xobjectable on objectable.
Creating index yobjectable on objecttable.
Creating table memberof.
Creating index xmemberof on memberof.
Creating index ymemberof on memberof.
Creating table coupledwith.
Creating index xcoupledwith on coupledwith.
Creating index ycoupledwith on coupledwith.
Initializing topology class table.
Granting access to database tables to all users.
Closing database.
Done.

_ `

3.3.5.2 Creating trapdlog SQL Table
To create the trapd SQL table issue the command trapsql with root authority.
Using the default parameters set up during step 1 3.3.3, “Specifying Default
RDBMS System” on page 43, only the flags -c -v are necessary.

] ^
[root:rs60002] / > trapsql ?
Usage: trapsql [-c|-C|-D][-v][-h][-l logfile][-t tracefile]

[-m tracemsk][-Z dbtype][-U DBA userid][-P DBA password][-S server]
-c Create the trapd SQL tables.
-C Clear the trapd SQL tables.
-D Drop the topology SQL tables.
-v Verbose mode.
-h Help.
-l logfile Change log file name.
-m tracemask Trace mask values. Options are: 0 Tracing off,

1 Insert trace, 2 Select trace, 4 Update trace,
8 Delete trace, 16 Misc trace, 32 Entry trace,
64 Error trace, 127 All traces

-t tracefile Change trace file name.
-Z dbtype Type of SQL database. Options are: Ingres,

Oracle, Sybase, Informix and DB2.
-U DBA userid Database Administrator login id.
-P DBA password Database Administrator login password.
-S server SQL Server name.

_ `

Note that the same command will be used to clear the database (-C option) or to
drop it (-D option).

46 Examples of Using NetView for AIX

] ^
[root:rs60002] / > trapsql -c -v
Connecting to Database Server.
Creating table traplogd.
Trapsql utility complete.

_ `

3.3.5.3 Creating snmpCollect Tables
To create the snmpCollect SQL table issue the command nvColTable with root
authority. Using the default parameters set up during step 1 3.3.3, “Specifying
Default RDBMS System” on page 43, only the flags -c -v are necessary.

] ^
[root:rs60002] / > nvColTable ?
Usage: nvColTable {-c|-C|-D} [-Z dbtype] [-l logfile] [-t tracefile] [-m tracemask]

[-U DBA Id [-P DBA password]] [-S servername] [-v] [-h]
-c Create the snmpCol SQL tables.
-C Clear the snmpCol SQL tables.
-D Drop the snmpCol tables.
-Z dbtype Type of SQL database. Options are:

Ingres, Oracle, Sybase, Informix and DB2
-l logfile User specified log file
-t tracefile User specified trace file
-m tracemask Trace mask values. Options are:

1 Insert trace, 2 Select trace, 4 Update trace
8 Delete trace, 16 Misc trace, 32 Entry trace
64 Error trace, 127 All traces

-U DBAId Database Administrator login Id.
-P DBApassword Database Administrator login password.
-S servername SQL Server name
-v Verbose mode
-h Help

_ `

Note that the same command will be used to clear the database (-C option) or to
drop it (-D option).

] ^
[root:rs60002] / > nvColTable -c -v
Connecting to Database Server.
Creating table colData.
Creating table varInfo.
Creating table expInfo.
nvColTable utility complete.

_ `

3.4 Using IP topology SQL Tables
Figure 29 on page 48 shows the four databases that comprise the openview
database (note that TFFU stands for ″Flat File″).

 1. ovw database (Flat File only):
• Managed by ovwdb daemon
• Queried by ovobjprint standard command
• Note that the wtovwconv program is a sample developed as part of this

project to give the ability to load these data in an SQL table (discussed
in 3.4.1, “Structure of IP Topology SQL Tables” on page 49).

 2. IP topology database (Flat File or SQL database):
• Managed by ovtopmd daemon

Chapter 3. Database 47

• Queried by ovtopodump command if stored in a flat file file
• Any SQL query if using an SQL database (such as the commands and

routines described later in this chapter).
 3. Non-IP topology database (Flat File only):

• Managed by gtmd daemon
• No standard command to access the data (note that the Open technology

API will allow such a command to be produced)
 4. Map database(s) (Flat File only):

• Managed by ipmap and xxmap applications
• Queried by ovmapdump command (and the NetView for AIX GUI)

Figure 29. The OpenView Database

48 Examples of Using NetView for AIX

3.4.1 Structure of IP Topology SQL Tables
Table 5 gives a complete list of the SQL tables for the IP topology database.

Table 5 (Page 1 of 2). IP Topology Database. Description of the SQL tables.

Table Description

networkclass Contains information about network, each row represents one
network in the IP topology.
• objid
• ip_network_name, ip_status
• ip_address, ip_subnet_mask
• topm_interface_count, topm_segment_count

segmentclass Contains information about segment, each row represents one
segment in the IP topology.
• objid
• selection_name, ip_status
• topm_interface_count

nodeclass Contains node information, each row represents one node in the
IP topology.
• objid
• ip_hostname, ip_status
• snmp_sysdescr, snmp_syslocation, snmp_syscontact
• topm_interface_count
• snmp_sysobjid, ipforwarding
• snmpaddr

interfaceclass Contains interface information, each row represents one interface
in the IP topology.
• objid
• snmp_ifdescr, ip_status
• ip_address, ip_subnet_mask
• ifnumber, snmp_iftype
• snmp_ifphysaddr

classtable This table describes each object class, it is composed of two
columns classid and name, and it contains four rows:
• classid name
• 1 network
• 2 segment
• 3 node
• 4 interface

objecttable This table describes to which classid (described in the classtable)
belongs each object contained in networkclass, segmentclass,
nodeclass or interfaceclass tables. The objecttable is composed of
the two columns:
• objid
• classid (1,2,3,4)

memberof This table contains the two relationships, interface member-of
node and segment member-of network. The table is composed
of the two columns:
• containedobjid
• containerobjid

coupledwith This table contains the two relationships, interface coupled-with
segment and interface coupled-with network.
The table is composed of the two columns:
• objid1
• objid2
Note: To improve performance, each relationship appears twice in
the table with the IDs swapped between the two columns.

Chapter 3. Database 49

Table 5 (Page 2 of 2). IP Topology Database. Description of the SQL tables.

Table Description

topoinfo Each column of this table is one specific counter (number of objects,
number of nodes, etc...). This table contains just one row; the up-to
date counters.

3.4.2 Conversion Between Flat File and SQL Database
Depending on the option used, the same command ovtopoconv can be used to
convert flat files to SQL tables or to convert SQL tables to flat files for the IP
topology database.

] ^
[root:rs60002] ovtopoconv ?
Usage: ovtopoconv {-S|I|R|N|F|A|B|C|D|E} [-v]

-S Convert to the flat file from Sybase RDBMS.
-I Convert to the flat file from Informix RDBMS.
-R Convert to the flat file from Oracle RDBMS.
-N Convert to the flat file from Ingres RDBMS.
-F Convert to the flat file from DB2/6000 RDBMS.
-A Convert to the Sybase RDBMS from flat file .
-B Convert to the Informix RDBMS from flat file .
-C Convert to the Oracle RDBMS from flat file .
-D Convert to the Ingres RDBMS from flat file .
-E Convert to the DB2/6000 RDBMS from flat file .
-v Verbose mode.

_ `

3.4.2.1 Convert IP Topology Data from Flat File to SQL Database
This option is used when ovtopmd has been configured to run with flat files. It
allows you to take a snapshot of the IP Topology database in order to make an
SQL query. This option could be automated using the cron mechanism. The
conversion needs to have empty database tables to write into, so it has to be
preceded by SQL table cleanup. Figure 30 shows a sample script file that
performs the sequence.

#check if tbinit (informix server is running)
TBINIT=`ps -ef | grep -e grep | grep tbinit | wc -l`
if [″$TBINIT″ -ne 1]

then tbinit
fi

using Informix
1. Clean the database
in_ovtoposql -C -v

2. Make the conversion
ovtopoconv -B -v

Figure 30. Script f i le to Automate Conversion of IP Topology Data in SQL Tables

The result of running this command is shown below:

50 Examples of Using NetView for AIX

] ^
Using default database openview.
Connecting to database openview.
Truncating the table networkclass.
Truncating the table segmentclass.
Truncating the table nodeclass.
Truncating the table interfaceclass.
Truncating the table topoinfo.
Truncating the table classtable.
Truncating the table objecttable.
Truncating the table memberof.
Truncating the table coupledwith.
Re-adding records into class table.
Closing database.
Done.
Using default database name openview.
Converting from private datastore to SQL.
Verifying that there is no ovtopmd executing.
Opening source database
Opening target database
Converting global topology information.
Converting 9 networks.

1/9 9.67.46.128.
...
9/9 9.24.104.

Converting 9 segments.
1/9 9.67.46.128.Segment1.
...
9/9 9.24.104.Segment1.

Counting Nodes. Please wait : This will take some time ...
Converting 30 nodes.

1/30 eamon.itso.ral.ibm.com.
.....
30/30 rs60004.itso.ral.ibm.com.

Closing databases.
Done.

_ `

Note

The daemon ovtopmd has to be stopped, using command ovstop ovtopmd
prior to running the conversion.

3.4.2.2 Convert IP Topology Data from SQL Database to Flat File
This option could be used when it has been decided to get back to the
configuration of flat file for ovtopmd daemon.

3.5 Examples of SQL Queries for the IP Topology Database
In this section we explain how to use SQL to make queries of the IP topology
database. As the IP topology database is comprised of nine tables, we will want
information binding more than one class of object (network, segment, interface
or node). To achieve this we must join tables and and use SQL subquery.

Our objective is to use SQL to extract the information that we previously
extracted using ovobjprint and ovtopoprint (see 3.1.5, “Extracting Information
from the Flat File Database” on page 36) and then to present that information in
a simple way.

Chapter 3. Database 51

The queries we construct will provide, for one or several nodes, the
characteristics of the nodes, including:

• Characteristics of the node itself.
• List of interfaces with their own characteristics.
• For each interface the network to which it belongs.

Figure 31 shows the first query needed, to give in one shot, information about
the node itself and the associated interfaces.

To achieve that, we have to join tables:

 1. nodeclass returns node information,
 2. memberof returns list of the interface IDs belonging to this node.

The joining of these tables is performed by,

• select from nodeclass,memberof allows us to query concurrently the two
tables nodeclass and memberof.

• nodeclass.objid=memberof.containerobjid allows us to select only rows where
the container (in memberof table) and the node (in nodeclass table) have the
same object-id.

Note that the condition ip_hostname like ′%string%′ allows query of one node or
several nodes (when ip_hostname matches with ″string″), or all the nodes when
string is blank.

select nodeclass.objid,ip_hostname,snmpaddr,containedobjid
from nodeclass,memberof
where
containerobjid =
(select objid from nodeclass where ip_hostname like ′%Trs60001U%′)

and
nodeclass.objid=memberof.containerobjid

;

Figure 31. SQL Query of Interfaces for NodeID=rs60001

The above query lists all the interface objID for node rs60001. The resulting
display looks like this:

52 Examples of Using NetView for AIX

] ^
objid 194
ip_hostname rs60001.itso.ral.ibm.com
snmpaddr 9.24.104.26
containedobjid 193

objid 194
ip_hostname rs60001.itso.ral.ibm.com
snmpaddr 9.24.104.26
containedobjid 228

objid 194
ip_hostname rs60001.itso.ral.ibm.com
snmpaddr 9.24.104.26
containedobjid 230

objid 194
ip_hostname rs60001.itso.ral.ibm.com
snmpaddr 9.24.104.26
containedobjid 232

objid 194
ip_hostname rs60001.itso.ral.ibm.com
snmpaddr 9.24.104.26
containedobjid 6015

_ `

The query above gave us the list of the objIDs of all interfaces in a specific node.
We have now to issue, for each interface-id returned, a query such as in
Figure 32 on page 54, giving in one shot information about the interface and its
network. In this query we again join tables:

 1. interfaceclass: returns interface information such as:
• IP Address
• Physical address
• SNMP description
• protocol (9 means IEEE 802.5)

 2. coupledwith: returns network objID and segment objID which define the
places within the topology where the interface is connected.

 3. objecttable: allows us to restrict the result of table coupledwith to network
only (objecttable.classid).

 4. networkclass: returns network information, such as the IP Network name.

In order to get network information we have to issue a sub-query which joins:

 1. coupledwith: returns the objectIDs of the network and segment that the
interface belongs to.

 2. objecttable: allows us to restrict the result of table coupledwith to network
only.

Chapter 3. Database 53

select interfaceclass.objid,
interfaceclass.ip_address,
snmp_ifphysaddr,snmp_iftype,snmp_ifdescr,
ip_network_name
from interfaceclass,coupledwith,objecttable,networkclass
where interfaceclass.objid=T193U
and coupledwith.objid2=interfaceclass.objid
and coupledwith.objid1=objecttable.objid
and objecttable.classid=1
and networkclass.objid =
(select objid1
from coupledwith,objecttable
and coupledwith.objid2=T193U
and classid=1
and coupledwith.objid1=objecttable.objid);

Figure 32. Characteristics of Interface ob j id=193

The above example is a query that extracts the details of the interface whose
objID is 193. The result is:

] ^
objid 193
ip_address 9.24.104.26
snmp_ifphysaddr 0x10005AA8D769
snmp_iftype 9
snmp_ifdescr tr2; Product: not available! Manufacturer: not
available! Part Number: not available! FRU Number: not available!
ip_network_name 9.24.104

_ `

3.6 Combining and Formatting SQL Queries
The sample queries shown above extract the data we are interested in, but we
would like to be able to link them together, and then format the results.

To do this we need to write a program that issues the initial query and then
processes the subsequent queries for each interface that it returns.

There are two programming methods available to us:

• AIX script program:

This program is developed as an AIX script command file. The main script
program executes each SQL query in turn by connecting to the RDBMS,and
executing the initial SQL query. The result is spooled to a file or pipe. Then
the AIX script command explodes the output of the query and executes the
subsequent queries.

• C language program:

Using a C language program we can use more elaborate techniques, such
as the SQL cursor mechanism. The SQL cursor allows processing of SQL
statements that return more than one row. The programmer has to declare a
cursor for the query, then he can proceed row-by-row to execute the
subsequent queries.

We will illustrate this with two examples:

54 Examples of Using NetView for AIX

wtqnode Query a node or a list of nodes, developed using both of the
mechanisms just described.

wtqnetwork Query a network or a list of networks, developed only with the SQL
cursor (C program) mechanism.

3.6.1 SQL Sample wtqnode
The logic followed by both the shell script form and the C form of this program is
identical:

┌──────────────────┐
│ Select list of │
│ Node objIDs and │
│ contained objIDs │ T1U
│ (interfaces) │
└─────────┬────────┘

│
(

┌──────────────────┐
│ For each node │
│ objID, do.... ├──────────┐
└──────────────────┘ │

 � (
 │ ┌───────────────┐

│ │ Print Node │ T2U
│ │ details │
│ └───────┬───────┘

 │ (
 │ ┌───────────────┐

│ │ For each │
│ │ interface ├───────────┐
│ │ objID, do.... │ │
│ └───────────────┘ │
│ � (
│ │ ┌─────────────────┐
│ │ │ Print Interface │ T3U
│ │ │ details │
│ │ └────────┬────────┘
│ │ │
└────────────────────┴──────────────────┘

Figure 33. Logic for wtqnode Samples

Clearly, actions T1U and T2U are performed by the first SQL query we produced
(see Figure 31 on page 52) and T3U is performed by the second (Figure 32 on
page 54).

3.6.1.1 wtqnode - Shell Script Version
The source code for this and the following examples is listed in Appendix D,
“Database Samples” on page 271.

Figure 187 on page 272 shows the AIX script file wtqnode which uses the Oracle
RDBMS. You will note the sqlplus -v uid/pwd @cmd command within the script.
This makes a connection on Oracle and executes the SQL commands contained
in file cmd.sql.

Chapter 3. Database 55

As you would expect from the logic diagram above, there are three such SQL
queries imbedded in the wtqnode script:

lc.sql For a given node name, writes in a file (standard output, redirected to
wtqnode.out) the objID for each interface (see Figure 188 on
page 272).

lo.sql For a given node objID, which has been read from the previous output
file, print the value of an attribute passed as parameter (here
ip_hostname and snmpaddress), (see Figure 189 on page 273).

li1.sql Gives the characteristics of a given interface object ID (see
Figure 190 on page 273).

Note that in the .sql command files we are using:

• Positional arguments (&1, &2) to pass variable information to the embedded
query

• The column command which allows us to resize the output

The rest of the script consists of wizardry from awk and cut to reformat the raw
SQL query into something more readable.

An example of the result of the wtqnode shell script is shown below:

] ^
/ > wtqnode rs60001

IP hostname:
rs60001.itso.ral.ibm.com
IP address:
9.24.104.26
==
ObjID IP Address Phys.Address Type IP Network

193 9.24.104.26 0x10005AA8D769 tr2; 9.24.104
228 9.67.32.85 0x02608C2EB97C et0; 9.67.32.64
230 9.67.38.71 0x10005AA88793 tr0; 9.67.38.64
232 9.67.46.29 0x10005AC94085 tr1; 9.67.46

_ `
Figure 34. Sample Result of wtqnode Shell Script. The node we are querying (rs60001)
has four IP network interfaces.

3.6.1.2 wtqnode - C Program Version
Figure 191 on page 274 shows the source code for the C language version of
wtqnode, written for use with the Informix RDBMS. In fact, this program source
is a file of type .ec which indicates an embedded SQL program. This means that
it has to be preprocessed using the esql command to expand the SQL queries
before being processed by the regular ″C″ compiler. The make file used to do
this is shown in Figure 192 on page 277.

The wtqnode command makes use of the SQL cursor mechanism which allows a
program to manipulate data coming from a multi-line SQL query. This allows us
to structure the queries a little better than in the shell script version. The first
query (defined as q1) extracts the node information. The $fetch command then
allows us to process each row returned in that query, by referencing the cursor,
c1, which we previously declared for it.

56 Examples of Using NetView for AIX

The result of running this version of wtqnode against node rs60001 is shown
below:

] ^
/ > wtqnode rs60001
==
objid:194 - ip_hostname: rs60001.itso.ral.ibm.com
==
Description : IBM RISC System/6000
Machine Type: 0x0010 Processor id: 000181471000
The Base Operating System AIX version: 03.02.0000.0000
TCPIP Applications version: 03.02.0000.0000
Location :
Contact : Rob Macgregor′ s V3.2.5 Rob is in: BB112 x1-2325
SNMP address: 9.24.104.26
Objid IP Address Network Name Physic. Address Type Status
-------- --------------- --------------- --------------- ---- ------
193 9.24.104.26 9.24.104 0x10005AA8D76 tr2; up
228 9.67.32.85 9.67.32.64 0x02608C2EB97 et0; down
230 9.67.38.71 9.67.38.64 0x10005AA8879 tr0; down
232 9.6 7.46.29 9.67.46 0x10005AC9408 tr1; down
==

1 row(s) retrieved._ `
Figure 35. Example of wtqnode C Program Output. The C version of the routine displays
more detailed information than the shell script. It also executes noticeably faster.

3.6.2 SQL Sample wtqnetwork
This sample extracts summary information about every node in an IP network or
subnetwork. It allows you to specify a network address, or a pattern or to list all
networks.

To do this, four nested SQL queries have to be embedded into the program:

 1. List all the networks matching the pattern.

 2. Within each network, list all the segments.

 3. Within each segment, list the object ID of every interface.

 4. List the details of a given interface object ID.

The source code (using Informix SQL embedded in ′C′) is in Figure 193 on
page 278. The result of running the program with a pattern of ″9.24.1″ is shown
in Figure 36 on page 58.

Chapter 3. Database 57

/ > wtqnetwork 9.24.1
==
OVw id = 517 - Network name = 9.24.104
IP Address = 9.24.104.0 - Subnet mask = 255.255.255.0
--> Contents of Segment: 9.24.104.Segment1
--

ObjID Stat IP Address Phys. Address Node
--

1 520 up 9.24.104.1 0x10005AC85005 6611ral.itso.ral.ibm.com
2 1070 up 9.24.104.14 0x400000032265 bnusbaum.itso.ral.ibm.com
3 522 up 9.24.104.15 0x10005AC95049 barry.itso.ral.ibm.com
4 1736 up 9.24.104.18 0x400000032262 eamon.itso.ral.ibm.com
5 1646 up 9.24.104.19 0x400000033334 ssbreese.itso.ral.ibm.com
6 524 up 9.24.104.23 0x10005A4F58CE rs60003.itso.ral.ibm.com
7 1016 up 9.24.104.24 0x0080B21000B5 tridnxn2.itso.ral.ibm.com
8 1022 up 9.24.104.25 0x10005AC95035 rs60005.itso.ral.ibm.com
9 1706 up 9.24.104.26 0x10005AA8D769 rs60001.itso.ral.ibm.com

10 1035 up 9.24.104.27 0x10005AC93F63 rs60004.itso.ral.ibm.com
11 515 up 9.24.104.28 0x10005AA87023 rs60002.itso.ral.ibm.com
12 1073 up 9.24.104.29 0x400000033306 ba33306.itso.ral.ibm.com
13 1075 up 9.24.104.30 0x10005AA8B5EA rs60008.itso.ral.ibm.com
14 7993 up 9.24.104.37 0x400000033352 p75itso.itso.ral.ibm.com
15 1042 up 9.24.104.38 0x400000032232 lannetv.itso.ral.ibm.com
16 1080 down 9.24.104.39 0x400000032249 bjohnson.itso.ral.ibm.com
17 1082 up 9.24.104.40 0x400000032240 mcgregor.itso.ral.ibm.com
18 2514 down 9.24.104.41 0x10005AACEEB2 itsoxst41.itso.ral.ibm.com
19 1808 up 9.24.104.42 0x10005AEC2933 itsoxst42.itso.ral.ibm.com
20 4209 up 9.24.104.45 0x10005AE8770A itsoxst45.itso.ral.ibm.com
21 1044 down 9.24.104.47 0x10005AE88A04 itsoxst47.itso.ral.ibm.com
22 1084 up 9.24.104.51 0x400000033324 itso51.itso.ral.ibm.com
23 1086 up 9.24.104.54 0x400000033322 aixagent1.itso.ral.ibm.com
24 1046 up 9.24.104.55 0x400000033342 aixagent2.itso.ral.ibm.com
25 8525 up 9.24.104.58 0x400031740004 3174tcp1.itso.ral.ibm.com
26 1048 up 9.24.104.70 0x10005AC92CEB 9.24.104.70
27 1088 down 9.24.104.72 0x10005ACC5FD5 9.24.104.72
28 1676 up 9.24.104.73 0x400000032293 9.24.104.73
29 1037 up 9.24.104.74 0x400050013172 mvs18.itso.ral.ibm.com
30 1090 up 9.24.104.76 0x10005AC92031 rs60007.itso.ral.ibm.com
31 1092 up 9.24.104.78 0x10005A2080FD gildas.itso.ral.ibm.com

==
OVw id = 1018 - Network name = 9.24.1
IP Address = 9.24.1.0 - Subnet mask = 255.255.255.0
--> Contents of Segment: 9.24.1.Segment1
--

ObjID Stat IP Address Phys. Address Node
--

1 1844 up 9.24.1.1 0x10005AC81099 6611slk.sl.dfw.ibm.com
2 1019 up 9.24.1.3 0x10005AC830C8 6611ral.itso.ral.ibm.com
3 1840 up 9.24.1.4 0x10005A88B612 gburg.sl.dfw.ibm.com
4 1842 up 9.24.1.7 0x10005AC8D0D1 6611gbg.sl.dfw.ibm.com
5 1838 up 9.24.1.9 0x10005AE83DF7 supername.sl.dfw.ibm.com

==

2 row(s) retrieved.

Figure 36. Result of wtqnetwork Command

3.7 Integrating SQL Queries Into the NetView for AIX GUI
The queries we have been using above will operate regardless of whether
NetView for AIX is running (in fact, if the queries are issued on the server of a
client/server database configuration, NetView for AIX does not have to be
installed at all). In some cases it would be useful to have database information
available at the NetView for AIX Graphical End-user Interface (GUI).

The method used for adding entries to the NetView for AIX menus, is to define
the entry in a Registration File. Registration files are fully documented in
NetView for AIX Programmer′s Guide, SC31-6238. We produced a registration file
to allow the user to execute the two sample programs wtqnode and wtqnetwork
from a menu bar option when they have selected a node or network with the
mouse.

58 Examples of Using NetView for AIX

The registration file we used is shown in Figure 37 on page 59. This adds a new
option to the NetView for AIX menu bar called ″SQL″. The two entries added by
the registration file use the NetView for AIX xnmappmon command to display the
results of wtqnode and wtqnetwork in a scrollable Motif window.

The result of executing the wtqnode command from the SQL menu is shown in
Figure 38 on page 60. Note that it is possible to make this action the default
when you double-click a node with the mouse. This would produce a behavior
similar to that of NetView for AIX Version 1, where summary details of the node
are displayed instead of a submap containing IP interface symbols. You can
make a node behave in this way by using the following procedure:

 1. Select the node using the right mouse button (brings up a context menu).
 2. Navigate the menus: Edi t ->Modi fy /Descr ibe->Symbol
 3. Change behavior to ″Execute″ instead of ″Explode″.
 4. Select your application (in our case, ″SQL Queries : node″).
 5. Select the node itself as target object.
 6. Press OK.

/*
Registration file for SQL database samples wtqnode
and wtqnetwork

*/

Application ″SQL queries″ {

MenuBar ″SQL″ _S
{

″Contents of a node″ f.action ″node″ ;
″Contents of a network″ f.action ″network″ ;

}
Action ″node″
{

SelectionRule (isNode);
MinSelected 1;
MaxSelected 1;

Command ″xnmappmon -commandTitle \″Node Detail\″
-geometry 625x540
-cmd /u/raleigh/SQL/informix/wtqnode \″$OVwSelection1\″″ ;

}
Action ″network″
{

SelectionRule (isNetwork);
MinSelected 1;
MaxSelected 1;

Command ″xnmappmon -commandTitle \″Network Node List\″
-geometry 700x800
-cmd /u/raleigh/SQL/informix/wtqnetwork \″$OVwSelection1\″″ ;

}
}

Figure 37. Registration File for SQL Query Samples

Chapter 3. Database 59

Figure 38. Executing wtqnode from a NetView for AIX Menu

3.8 trapdlog SQL Table
If you take the option to convert event log (trapd.log) data to SQL format, it is
stored in the same database as defined for IP topology (above). The SQL table
that contains the event information is called trapdlog .

In this section we will examine the trapdlog table and show an example of how
the data collected in it may be used.

3.8.1 Structure of the trapdlog Table
Unlike the IP topology information, which is contained in many inter-related
tables, trapdlog is a single table format. The columns correspond directly with
the fields in the trapd.log flat file format (see 3.1.3, “The trapd.log File” on
page 34).

60 Examples of Using NetView for AIX

Table 6. trapdlog SQL Table

Database Description

epochtime Number of seconds since 01/01/70 (midnight)

trapcategory Type of the trap
• 0 = threshold events
• 1 = network topology
• 2 = error events
• 3 = status events
• 4 = node configuration events
• 5 = application alerts
• 6 = events displayed on all category windows
• 7 = events logged but not displayed
• 8 = map events, not displayed or logged

createtime Represents the time the trap was created

ip_hostname IP_hostname for the trap

trapsource Represents the source of the trap
• a = appl icat ion
• A = agen t
• C = Xnmcol lect
• d = demo or loadhosts
• D = datacol lector
• E = Xnmevents
• G = ignore
• l = lpmap_sa
• L = loadmib
• M = map or topmd
• n = netmon re lated
• N = ne tmon
• O = Osi_sa
• P = Non ip
• r = Tra ler t
• s = Spappl
• S = secur i ty agent
• t = Xnmt rap
• T = t rapd
• V = vendor

description Represents the description of the traps

3.8.2 Managing the trapdlog SQL Table
The process trapd, which received all traps to be processed by NetView for AIX,
writes to the flat file /usr/OV/log/trapd.log even if the SQL database support is
installed.

NetView for AIX provides utilities to copy the contents of the log file into the SQL
trapdlog table, and to manage the table once it is loaded. The commands are:

traptosql This reads trapd.log and writes it to the trapdlog SQL table. You can
optionally specify things such as which RDBMS to use, and where to
read the log data from. The default is to use the RDBMS that you set
up as default in SMIT (3.3.3, “Specifying Default RDBMS System” on
page 43), and to use /usr/OV/log/trapd.log as the source.

trapdeletesql This command allows you to delete records from the trapdlog table
based on criteria that you supply. You can specify dates, trap type, or
host name to control the deletion.

Chapter 3. Database 61

trapsql We have met this command before (3.3.5.2, “Creating trapdlog SQL
Table” on page 46) when creating the trapdlog table. It may also be
used to clear and reinitialize the table.

It is important to put controls in place to manage the event log and the trapdlog
SQL table. If you do not remove old records, the files will grow without limit.

We created a shell script, trapdhousekeep to help with this process. It is listed in
Figure 39 on page 63. It performs three operations:

 1. Records older than 14 days are deleted from the trapdlog SQL table

 2. The current trapd.log is loaded into SQL

 3. trapd.log is deleted

62 Examples of Using NetView for AIX

#!/bin/ksh

number of days in each month

integer daysinmonth
set -A daysinmonth 31 31 28 31 30 31 30 31 31 30 31 30

First work out the date two weeks ago (forget about
leap years and the millenium!)

dd=`date +%e`
mm=`date +%m`
yy=`date +%y`

if ((dd < 15))
then

((mm = mm - 1))
((dd = dd + daysinmonth[mm]))
if ((mm == 0))
then

mm=12
((yy = yy - 1))

fi
fi

((dd = dd - 14))

We may have knocked off leading zeroes - replace them

if [[${#mm} = 1]]
then

mm=0$mm
fi
if [[${#dd} = 1]]
then

dd=0$dd
fi
datetime=″0000″
datetime=ddmmyydatetime

Now delete all records over 14 days old
/usr/OV/bin/trapdeletesql -vT $datetime

Move all records in trapd.log into SQL
/usr/OV/bin/traptosql -v

Finally delete trapd.log
if (($? == 0))
then

cat /dev/null > /usr/OV/log/trapd.log
else

print ″traptosql failed - trapd.log not deleted″
fi

Figure 39. trapdhousekeep Shell Script

We want this housekeeping to be an automatic process, so it is a good idea to
set up a crontab entry to perform it. We added the following crontab entry to
cause the housekeeping to take place at 1 a.m. daily:

0 1 * * * /u/raleigh/scripts/trapdhousekeep

You add a new crontab entry by using the crontab -e command to edit the
crontab table.

Chapter 3. Database 63

3.9 Using the Information in the trapdlog SQL Table
There are three options available to you for extracting data from the trapdlog
SQL table:

 1. The NetView for AIX provided command trapquerysql

 2. General SQL SELECTs

 3. Programs with embedded SQL

We will look at examples of all three approaches.

3.9.1 Using the trapquerysql Command
trapquerysql allows you to extract event records based on a range of criteria,
such as hostname, date/time and event type. As an example, here we request
all traps relating to a specific node:

/ > trapquerysql -H rs60003.itso.ral.ibm.com
767385777 3 Tue Apr 26 14:42:57 1994 A rs60003.itso.ral.ibm.com IBM Agent Up with No Changes (warmStart Trap)
767390023 3 Tue Apr 26 15:53:43 1994 A rs60003.itso.ral.ibm.com trapgend agent up with possible changes (coldStart trap)
767390469 5 Tue Apr 26 16:01:09 1994 A rs60003.itso.ral.ibm.com Application error
767390469 5 Tue Apr 26 16:01:09 1994 A rs60003.itso.ral.ibm.com Description : Daemon Down
767390469 5 Tue Apr 26 16:01:09 1994 A rs60003.itso.ral.ibm.com IP Address : 9.24.104.21
767390469 5 Tue Apr 26 16:01:09 1994 A rs60003.itso.ral.ibm.com Program : SNA
767390469 5 Tue Apr 26 16:01:09 1994 A rs60003.itso.ral.ibm.com Location : ITSC Raleigh
767390469 5 Tue Apr 26 16:01:09 1994 A rs60003.itso.ral.ibm.com Contact : 919-301-1234
767390481 5 Tue Apr 26 16:01:21 1994 A rs60003.itso.ral.ibm.com Application error cleared
767390481 5 Tue Apr 26 16:01:21 1994 A rs60003.itso.ral.ibm.com Description : Daemon Restored
767390481 5 Tue Apr 26 16:01:21 1994 A rs60003.itso.ral.ibm.com IP Address : 9.24.104.21
767390481 5 Tue Apr 26 16:01:21 1994 A rs60003.itso.ral.ibm.com Program : SNA
767390481 5 Tue Apr 26 16:01:21 1994 A rs60003.itso.ral.ibm.com Location : ITSC Raleigh
767390481 5 Tue Apr 26 16:01:21 1994 A rs60003.itso.ral.ibm.com Contact : 919-301-1234

Figure 40. Result of trapquerysql Command

3.9.2 Using SQL to Extract trapdlog Data
The trapquerysql command provides a limited amount of capability for extracting
information from the trapdlog SQL table. By using simple SQL queries we can
expand on this considerably.

For example, we may be interested in the availability of nodes in the network.
NetView for AIX writes an event each time netmon status polling detects a node
going up or down. By performing a simple SQL query we can extract these
events and organize them.

The query we issued is shown below. It selects all ″Node Up″ and ″Node Down″
events, and then orders the results by hostname and time.

select ip_hostname,trap_create_time,description
from trapdlog
where

description like ′%Node Up%′
or

description like ′%Node Down%′
order by ip_hostname,trap_create_time
;

Figure 41. SQL Select Command for trapdlog

64 Examples of Using NetView for AIX

The result of running this command is a report like that shown below:

] ^
trap_create_time 1994-04-26 15:52:52
ip_hostname 9.24.104.72
description Node Up.

trap_create_time 1994-04-26 15:06:49
ip_hostname 9.24.105.2
description Node Down.

trap_create_time 1994-04-26 15:08:51
ip_hostname 9.24.105.2
description Node Up.

trap_create_time 1994-04-26 15:00:58
ip_hostname alfred.itso.ral.ibm.com
description Node Down.

trap_create_time 1994-04-26 15:05:58
ip_hostname alfred.itso.ral.ibm.com
description Node Up.

trap_create_time 1994-04-26 14:47:02
ip_hostname joao.itso.ral.ibm.com
description Node Up.

trap_create_time 1994-04-26 15:05:19
ip_hostname joost.itso.ral.ibm.com
description Node Down.

trap_create_time 1994-04-26 15:10:19
ip_hostname joost.itso.ral.ibm.com
description Node Up._ `

3.9.3 Using Embedded SQL with trapdlog
The report shown above for node up/down events has selected the data that we
want, and gone some way towards organizing it. However, as with the IP
topology examples, we would like a more sophisticated format. To achieve this
we need to write a simple program.

The program sample wttraplog issues a modified version of the above SQL
query, and then processes the output using the SQL cursor function, to match up
Node Down/Up pairs. The source listing for the program is in Figure 194 on
page 281. Sample output of the program is shown below.

] ^
==
Node name Down from: to: Seconds
------------------------------------ ------------------ ------------------ -------

 9.24.105.2 1994-04-26 15:06:49 1994-04-26 15:08:51 122

 alfred.itso.ral.ibm.com 1994-04-26 15:00:58 1994-04-26 15:05:58 300

 joost.itso.ral.ibm.com 1994-04-26 15:05:19 1994-04-26 15:10:19 300
==_ `

Figure 42. Output from wttraplog Sample Program

Chapter 3. Database 65

3.9.4 Handling Multi-Line Events
The rows written in the trapdlog table have a one-to-one relationship with the
records in the trapd.log flat file. The description that appears in the file is
controlled by the trapd.conf file, which may be modified using the NetView for
AIX Options->Event Configuration->SNMP Trap Configuration menu item.

It is possible to specify newline characters (″\n″) within the descriptive text,
which improves the format of the event as it appears on the NetView for AIX
event cards, for example, as shown in Figure 43. However, using the \n format
causes multiple lines to be logged in the file /usr/OV/log/trapd.log (see
Figure 44). Because of the one-to-one relationship between the log file and the
rows in the SQL table, multiple trapdlog rows represent one original event.

Figure 43. Application Trap

765577041 3 Tue Apr 05 16:17:21 1994 rs60002.itso.ibm.com A ITSC APPLICATION ERROR
765577041 3 Tue Apr 05 16:17:21 rs60002.itso.ibm.com A ITSC Description - Daemon Down
765577041 3 Tue Apr 05 16:17:21 rs60002.itso.ibm.com A Ip Address - 9.24.104.21
765577041 3 Tue Apr 05 16:17:21 rs60002.itso.ibm.com A Program - SNA
765577041 3 Tue Apr 05 16:17:21 rs60002.itso.ibm.com A Machine Location - ITSC Raleigh
765577041 3 Tue Apr 05 16:17:21 rs60002.itso.ibm.com A Contact - 919-301-1234

Figure 44. Contents of /usr/OV/log/trapd.log

Usually the fact that a problem is represented by multiple lines does not matter,
but sometimes it does. For example, in the case shown above it may be that the
″Machine Location″ is a critical piece of information.

One way to handle the situation, when using SQL SELECT to find events, is to
additionally select all events from the same node at the same time. This is not
100% guaranteed, however, since epochtime is only accurate to the nearest
second.

66 Examples of Using NetView for AIX

An alternative approach is to preprocess the log file before loading it into SQL,
concatenating descriptive text for multi-line events. The sample shell script
wttrapconv (Figure 45 on page 67) does this. Note that as the maximum size of
the description column in trapdlog is 256 bytes, the description may sometimes
be truncated.

#!/bin/ksh

year=`date +%Y`
oldyear=year-1
infile=″ /usr/OV/log/trapd.log″
outfile=″ /tmp/trapd.log″
count_in=0
count_out=0

while read line
do

((count_in = count_in+1))
set $line

First line of multiline has year in date - others do not
if [[$7 != $year]] && [[$7 != $oldyear]]

then
line=`echo $line | cut -c59-`
len1=${#line}
len2=${#longline}
longline=″$longline / $line″

else
if ((count_out > 0))
then

print $longline >> $outfile
fi
longline=$line
((count_out = count_out + 1))

fi
done < $infile

print $longline >> $outfile
print ″trapd.log lines in: $count_in trapd.log lines out: $count_out″

traptosql -vI $outfile
rm $outfile

Figure 45. wttrapconv Shell Script. This script builds long lines from mult i- l ine trapd.log
entries.

3.10 snmpCollect SQL Table
The snmpCollect SQL table, coldata, is very similar to trapdlog in structure and
usage. The snmpCollect daemon polls for MIB data and stores it in its own
proprietary format (see 3.1.1, “SnmpCollect” on page 33). It then has to be
converted using the nvColToSQL command into the coldata table format.

The data being collected may be either raw MIB data or MIB expressions (that
is, arithmetical combinations of MIB values). For this reason there are two
additional tables, varinfo and expinfo which summarize the types of record found
in the coldata file.

Chapter 3. Database 67

3.10.1 Structure of the snmpCollect SQL Table

Table 7. snmpCollect SQL Tables

Database Description

coldata The coldata table stores collected data, including a date/time
stamp for the time of each data collection and the time in seconds
since 1/1/70 for each data collection.
• varID variable object identifier (Dotted Decimal)
• expName user-specified expression name (mibExpr.conf)
• collectTime beginning of collection interval(datetime)
• startTicks beginning of collection interval (seconds)
• stopTicks end of collection interval (seconds)
• hostName host name where data was collected
• ipAddr IP address where data are collected
• instance variable instance (can be IP address)
• stringValue IP address where data was collected
• f loatValue numeric value of the variable

varinfo The varinfo table stores MIB variable data,including MIB variable
object identifiers, names, type, and collection units.
• varID variable object identifier (Dotted Decimal)
• varName concatenation of mnemonic names (as defined in the MIB source)
• varUnits units in which snmpCollect stored the data
• varType GAUGE COUNTER IPADDRESS TIMETICKS INTEGER

expinfo The expinfo table stores MIB expression data, including the label
for the expression and a string representation of the expression in
algebraic form.
• expLabel expression user defined label
• expression expression in algebraic form
• expName user-specified expression name (mibExpr.conf)
• expDesc user-specified expression description
• expUnits represents the units of the collected expression

3.10.2 Managing the snmpCollect Data
The data in the snmpCollect SQL tables can be managed in much the same way
as the trapdlog data (3.8.2, “Managing the trapdlog SQL Table” on page 61).
Also the same caveats apply about putting housekeeping in place to prevent the
collection files and SQL tables from becoming too large. We did not produce a
sample script for this maintenance, but the trapdhousekeep sample (Figure 39 on
page 63) could be easily modified to do it.

The commands provided for SQL table maintenance are:

nvColToSQL This converts files from the snmpCollect database into SQL tables.
You have to specify the names of the files that you wish to convert.
This means that any automatic processes to invoke nvColToSQL will
have to be updated each time you add or remove a data collection
process.

nvDColData This deletes rows from the SQL tables. You can set criteria for the
rows to be deleted based on date, hostname and data type.

68 Examples of Using NetView for AIX

3.11 Using the Information in the snmpCollect SQL Tables
There are three options available to you for extracting data from the coldata,
vardata, and expdata tables:

 1. The NetView for AIX provided commands

 2. General SQL SELECTs

 3. Programs with embedded SQL

We will look at examples of the first two approaches.

3.11.1 Built-in Query Commands
There are three commands provided with NetView for AIX:

nvHostSumCol Prints a summary of the hosts for which data is in the database,
and the number of records of each variable type.

nvDataSumCol Prints a summary of the data types (MIB variables and
expressions) stored in the database, and the hosts to which they
apply.

nvQColData Prints rows from the coldata table. You can specify arguments to
restrict the dta extracted by date, hostname or data type.

First, an example of the nvHostSumCol command:

/ > nvHostSumCol
Variable Summary:

Host VarID Instance Count
=================================== ========================= =============== ======
rs60002.itso.ral.ibm.com .1.3.6.1.2.1.2.2.1.10 2 100
6611slk.sl.dfw.ibm.com .1.3.6.1.4.1.2.6.2.4.1.1.2 1 320
6611ral.itso.ral.ibm.com .1.3.6.1.4.1.2.6.2.4.1.1.2 1 332

Expression Summary:

 Host ExpName Instance Count
=================================== ========================= =============== ======
No records found for MIB Expressions

nvHostSumCol completed successfully

Figure 46. nvHostSumCol Output

We see that the MIB variable IDs are expressed in ″dotted decimal″ form. If we
want to see a more descriptive identifier we could issue the nvDataSumCol -V
command, or use the NetView for AIX MIB Browser to display the textual
description from the MIB source. In fact, the variables here are interface
utilization (octets inbound) and 6611 Processor Utilization.

If we want to see some detail of the 6611 utilization figures we could use
nvQColData:

Chapter 3. Database 69

] ^
/ > nvQColData -V .1.3.6.1.4.1.2.6.2.4.1.1.2

VarID: .1.3.6.1.4.1.2.6.2.4.1.1.2
Instance: 1
CollectTime: 1994-04-21 08:36:44
StartTicks: 766931803

 StopTicks: 766931804
 HostName: 6611ral.itso.ral.ibm.com
 IpAddr: 9.24.104.1
 StringValue: <null>
 FloatValue: 7

 VarID: .1.3.6.1.4.1.2.6.2.4.1.1.2
 Instance: 1
 CollectTime: 1994-04-21 08:36:44
 StartTicks: 766931803
 StopTicks: 766931804
 HostName: 6611slk.sl.dfw.ibm.com
 IpAddr: 9.19.143.10
 StringValue: <null>
 FloatValue: 2

 VarID: .1.3.6.1.4.1.2.6.2.4.1.1.2
 Instance: 1
 CollectTime: 1994-04-21 08:41:42
 StartTicks: 766931804
 StopTicks: 766932102
 HostName: 6611ral.itso.ral.ibm.com
 IpAddr: 9.24.104.1
 StringValue: <null>
 FloatValue: 2

(many other entries)_ `

Figure 47. nvQColData Command Example

3.11.2 Using SQL Select Commands with coldata
The above command has shown us all the 6611 utilization records that we have
collected. The information we are more interested in, however, is ″which of our
6611s are experiencing high processor utilization values, and when″.

We can write a simple SQL query to discover this:

select
hostName, CollectTime, floatValue
from coldata
where floatValue > 60
and varID = ′ . 1 .3 .6 .1 .4 .1 .2 .6 .2 .4 .1 .1 .2 ′
order by floatValue desc
;

Figure 48. Sample snmpCollect SQL Query

This query prints all instances where the 6611 utilization was over 60%, sorted in
descending order.

70 Examples of Using NetView for AIX

3.12 Performance Considerations
Inevitably, using an RDBMS to store database information in place of direct file
access will require additional processor cycles, memory, and I/O. In this project
we did not attempt a thorough analysis of the impact using an RDBMS has on
these performance indicators.

From the point of view of the user, these figures may not be significant anyway,
since it is perceived performance that is critical. The trapdlog and snmpCollect
data processes are essentially ″batch″ functions. The speed with which they
complete is usually not of major importance to the user. For this reason we
concentrate on the effect of using SQL for the ″l ive″ IP topology data.

In normal operation, there was no discernible difference between the SQL and
non-SQL environments for the end user. We devised the following test as a way
to measure one impact on the end user: We cleared the IP topology database
and then restarted NetView for AIX from scratch, using non-SQL, local SQL and
remote SQL configurations. In each case we measured the time taken (based on
″Node Added″ events being written to trapd.log) for all of the nodes in the local
subnetwork (33 nodes in all) to be discovered. We repeated the test three times
for each configuration to reduce random error and we performed the test without
the GUI active, so that operator actions would not affect the timings. The results
were as in Table 8.

Again, it should be stressed that this test should not be extrapolated to other
environments. All it proves is that, although there was no subjective difference
between the configurations, small variations do exist. These variations may
become important in a more heavily stressed system.

Table 8. Network Discovery Performance Test

Config Time Comments

Non-SQL 57 seconds

Local SQL 59 seconds Very slightly slower than non-SQL. The difference
would probably be more marked if the system
were more heavily loaded.

Remote SQL 81 seconds Hand-shaking between client and server probably
account for the extra delay. We would expect
this to be less sensitive to CPU load than the
local SQL configuration, since the client code
uses less system resource than the full database.

3.13 Extending SQL Support to the Object Database
As we have explained, of the ″openview″ databases, only IP topology is
supported for SQL in NetView for AIX However there may be situations where it
would be useful to combine information from the object database with the IP
information. For example:

• Information about non-IP protocols

• Extra fields added to the object database for local use

During the project we developed a program wtovwconv to add an extra table to
the SQL database and load it with information from the object database. The
program source is listed in Figure 195 on page 283.

Chapter 3. Database 71

wtovwconv uses the OVw API to gain access to the object database (see
Figure 21 on page 35 to see how the API is positioned within NetView for AIX).
The program is in two parts. The first creates an SQL create table command to
generate a table called wtxxx (where xxx is a name you supply). This table has
a key of the object ID and contains fields matching each of the fields in the
object database. The second part creates a sequence of SQL insert commands
to add every network object into the table.

This two-part approach is necessary because the structure of the NetView for
AIX object database is not fixed. That is, the fields in the database are defined
by definitions in files in the fields directory: /usr/OV/fields/C.

wtovwconv does not directly perform the database load, but instead places the
SQL statements into two .sql files. These may then be executed using
whichever RDBMS is installed.

3.13.1 An Example of Using wtovwconv
In this example we show how an extra information field that we have added in
the object database can be combined with data from IP topology in an SQL
query. There are four steps to the process:

 1. We add the field ″LAN_connection″ by placing a field registration file in the
NetView for AIX fields directory. The file we used is shown below:

Field ″LAN_connection″ {
Type StringType;
Flags locate, general;

}

 2. We need to give the new field a value for some of the nodes in the network.
We could write a program to access the OVw API and update the field
(Examples Using NetView for AIX APIs GG24-4059, includes sample code that
can do this). However, as we made it a field of type general we can simply
select Edit->Modify/Describe->Object from the NetView for AIX menu bar
and type in the value we want.

 3. We run the sample program wtovwconv to generate the two SQL command
files as described above

 4. We use the facilities provided by the RDBMS to invoke the command files,
thereby creating and loading the database table.

Figure 49 on page 73 shows the result of running a modified version of the
wtqnode program (see 3.6.1, “SQL Sample wtqnode” on page 55) with this
locally-added information included. Figure 50 on page 73 shows the modified
SQL select command that joins our new table with the interface table to
generate the modified output.

72 Examples of Using NetView for AIX

==
objid:541 - ip_hostname: rs60005.itso.ral.ibm.com
Description : IBM RISC System/6000
Machine Type: 0x0101 Processor id: 000014723800
The Base Operating System AIX version: 03.02.0000.0000
TCPIP Applications version: 03.02.0000.0000
Location : IBM B657, 4912 Green Road, Raleigh NC 27609
Contact : Dave Shogren
SNMP address: 9.24.104.25
--
Objid IP Address Network Name Phys. Address Type Status LAN attachment
-------- --------------- --------------- ------------- ---- ------ ------------------

540 9.24.104.25 9.24.104 0x10005AC9503 tr1; up 8230 #2, Port 16
580 9.67.32.84 9.67.32.64 0x08005A0D7FC en0; down Not connected
581 9.67.32.86 9.67.32.64 0x08005A0D7FC et0; down Hub 9, Slot 5, Port3
583 9.67.46.170 9.67.46.128 0x10005AB155D tr0; down 8250 #1, Slot 2, Port 19

==

1 row(s) retrieved.

Figure 49. Modified wtqnode with Manually-Added Data from Object Database

select interfaceclass.ip_address,
ip_network_name,
snmp_ifphysaddr,
snmp_ifdescr,
interfaceclass.ip_status,
lan_connection

from interfaceclass,
coupledwith,
objecttable,
networkclass,
wtobj

where interfaceclass.objid=$interface_id
and coupledwith.objid2=interfaceclass.objid
and coupledwith.objid1=objecttable.objid
and objecttable.classid=1
and wtobj.objid=interfaceclass.objid
;

Figure 50. SQL Select Command to Extract Addit ional Object Data. The name we gave
the object database table in SQL was ″wtobj″ in this case.

Chapter 3. Database 73

74 Examples of Using NetView for AIX

Chapter 4. Event Configuration

This chapter provides a summary of NetView for AIX event configuration and
shows examples of using NetView for AIX event configuration support.

NetView for AIX, including its event configuration, alert editor and RUNCMD
support, together with the ability to enter this environment via either a trap or
AIX V3 errlog entry, can be an effective part of an installation′s problem solving
and network or systems management solution. This is indicated in the following
figure.

┌─────────────────────┐ ┌─────────────────────┐ ┌─────────────────────┐
│Any system capable of│ │Any application which│ │Any application which│
│sending an SNMP trap │ │can send an SNMP trap│ │can write to AIX V3 │
│ - IBM │ │ - IBM │ │errlog (Plus access │
│ - non-IBM │ │ - non-IBM │ │to trapgend) │
└─────────┬───────────┘ └─────────┬───────────┘ └───────────┬─────────┘

└───────┐ │ ┌─────────────┘
│ │ │

┌──(───────────────(───────────(───┐
│ │
│ SNMP and Trap Handling Routines │
│ including NetView for AIX │
│ applications and/or applications │
│ such as AIX Systems Monitor/6000 │
└───────────────┬──────────────────┘

│
│

┌───────────────(──────────────────┐
│ ├──.User-Shell/Action
│ NetView for AIX │
│ ├──.Graphics
│ │
│ ├──.Trouble Ticketing
└────────�──────────┬──────────────┘ and other appls

│ │
RUNCMD NMVT (Alert)
│ │

┌────────┴──────────(──────────────┐
│ ├──.User Action
│ S/390 NetView │ and other S/390
│ - Any application capable of │
│ issuing a RUNCMD or reacting │
│ to to a received NMVT │
└──────────────────────────────────┘

Figure 51. NetView for AIX Event Configuration Ins and Outs

 Copyright IBM Corp. 1994 75

4.1 Summary of AIX V3 Event, Trap and Alert Management
The terms ″trap″, ″event″ and ″alert″ have various definitions and are used in
various ways. This chapter explains how these terms are used in this document.

4.2 NetView for AIX Events and Traps
There are two types of NetView for AIX events:

 1. A map event is generated when a user or an application changes the status
of the current open map.

 2. A network event is sent by an agent providing information regarding a
change in the network. In the SNMP environment these events are also
called traps.

Simple Network Management Protocol (SNMP) defines six generic types of traps
and also allows for the definition of enterprise-specific traps. The application
events are treated as enterprise-specific traps.

NetView for AIX uses several daemons and other processes to manage the
network. These processes will be synchronized with each other when NetView
for AIX is initially started.

For the duration of this section the term event, will also refer to traps. When the
events arrive, they will be formatted into an enterprise-specific format.

Events may be raised by SNMP functions, applications, NetView for AIX
components, shell scripts, AIX operating system and other SNMP-managed
devices.

4.3 NetView for AIX Event and Trap Daemons
The following sections outline the key NetView for AIX processes (daemons) for
managing events and trap processing. Figure 52 on page 77 summarizes the
daemons and shows how they communicate with each other.

76 Examples of Using NetView for AIX

┌──────────────────────────────────────┐
│┌────────────────────────────────────┐│
││ ┌──────────┐ ││
││ │ │ ┌──────┐ ││
││ │ ovelmd ├──.│ Log │ ││
││ │ │ │ file │ ││
││ └──────────┘ └──────┘ ││

┌─────────────┐ ││ � ││
│ Any Box │ ││ │ ││
│ ┌───────┐ │ ││┌───────┐ ┌────┴─────┐.F.┌────────┐││
│ │ SNMP │──┼──────┐ │││ Appl │ │ │.i.│ │││
│ │ agent │ │ Trap │ │││ code │ │ ovesmd │.l.│ nvevent│││
│ └───────┘ │ │ ││└───┬───┘ │ │.t.│ │││
└─────────────┘ │ ││ XMP(API └──────────┘.e.└────────┘││
┌─────────────┐ │ ││┌───────┐ � � .r.┌────────┐││
│ Any Box │ └───────.│││ │ │ ┌──┴──┐ . .│ │││
│ ┌───────┐ │ Trap │││ │────┘ │Conf │ .A.│tralertd├┼┼┐
│ │ Appl │──┼──────────────.│││ pmd │ │ │ .P.│ ││││
│ │ code │ │ │││ │────┐ │file │ .I.└────────┘│││
│ └───────┘ │ ┌───────.│││ │ │ └──┬──┘ │││
└─────────────┘ │ ││└───────┘ ((│││
┌─────────────┐ │ ││ � ┌──────────┐ ┌─────────┐│││
│ RS/6000 │ │ ││ │ │ ├─.│other ││││
│ ┌─────────┐ │ Trap │ ││ event │ trapd │ │NV/6000 ││││
│ │ errlog/ │─┼──────┘ ││ command │ │Z─┤processes││││
│ │ trapgend│ │ ││ └──────────┘ └─────────┘│││
│ └─────────┘ │ │└────────────────────────────────────┘││
└─────────────┘ │┌────────────────────────────────────┐││

││ AIX NetView Service Point Z─┼┼┘
││ ──┼┼┐
│└────────────────────────────────────┘││
│┌────────────────────────────────────┐││
││ SNA Services/6000 Z─┼┼┘
││ ──┼┼┐
│└────────────────────────────────────┘││
└──────────────────────────────────────┘│

│
│
│

┌────────────────────┐ │
│ │ │
│ S/390 NetView │ │
│ │Z────────┘
│ Hardware Monitor │
│ │
└────────────────────┘

Figure 52. NetView for AIX V3 Daemons

4.3.1 NetView for AIX Daemons and Agents Raising Events
snmpd The snmpd daemon is a server that services requests for the SNMP

protocol. It provides responses to SNMP requests from network
monitor applications, processing requests and returning the results to
the network monitor. It also sends trap notifications to all hosts
configured to receive the traps. All actions are logged in the file
/usr/tmp/snmpd.log.

smux subagents These subagents interface with the snmpd daemon using the
SNMP multiplexor (SMUX) protocol. These applications register with
the snmpd daemon to support Management Information Base (MIB)
extensions, and reply to SNMP requests. They can also forward traps
to the snmpd daemon, which will then forward them to the network
monitor.

trapgend The trapgend daemon is an example of a SMUX subagent that
converts AIX alertable errors into SNMP traps.

netmon The netmon daemon is responsible for discovering nodes and then
regularly polling them for new status. This uses the ICMP echo
request, but also will use SNMP GET requests if the device is running
an SNMP agent. When changes happen in the network, netmon will
generate an event, which it passes to trapd for processing.

Chapter 4. Event Configuration 77

snmpCollect The snmpCollect daemon polls systems for MIB values. Unlike the
polling for status information, the snmpCollect daemon only polls for
MIB data that is specified in the NetView for AIX Data collection
configuration option. Events are raised when threshold values are
exceeded.

4.3.2 NetView for AIX Daemons Acting on Events
pmd pmd (the ″postmaster″ daemon) allows processes to access all

protocols (SNMP and CMOT) and manages message routing to
managers and agents. All the traps raised pass through this daemon.
The traps are then sent to the ovesmd and trapd daemons.

trapd The trapd daemon receives SNMP traps from agent nodes, and then
sends them to the connected daemons. The trapd daemon logs all
the SNMP traps in the default log file /usr/OV/log/trapd.log.

The trapd daemon also forwards SNMP traps to other applications
that are directly connected to it (such as netmon).

ovactiond The ovactiond daemon is responsible for acting on any events sent to
the NetView for AIX system whilst the NetView for AIX GUI is not
active. This is a new daemon supplied with NetView for AIX V3R1.

ovesmd The Event Sieve Agent, ovesmd, receives events from the pmd
daemon. The ovesmd daemon determines which application should
receive the event. These applications can be user applications based
on SNMP or XMP APIs or NetView for AIX services. For example,
nvevent displays the events on the NetView for AIX GUI. ovesmd will
also handle the filtering according to the filter rules defined in
NetView for AIX.

ovelmd The event log agent, ovelmd, stores events in the log file
/usr/OV/log/ovevent.log. This log file is used for the NetView for AIX
event history display application.

tralertd The tralertd daemon converts traps into alerts. These are passed to
it across the ovesmd filter interface. After conversion, they are
forwarded to the NetView Host machine via the AIX NetView Service
Point application.

spappld The spappld daemon receives RUNCMDs from NetView and then
passes them to the service point application. It also provides
services to return a reply to the host.

gtmd The gtmd daemon receives events generated from non-IP agents that
use the generic topology MIB format. An example of this is LMU/2
interfacing with LMU/6000, which can send IPX information for a
Novell NetWare network to NetView for AIX. The information is then
formatted by the NetView for AIX xxmap application.

4.4 SNMP Configuration for AIX
Traps are messages formatted according to RFC 1215. The RFCs (″The Request
For Comments″) document the defined standards of the Internet suite of
protocols. The advantage in using traps is that NetView for AIX may manage
heterogeneous networks that use SNMP protocols.

78 Examples of Using NetView for AIX

The AIX V3 SNMP Agent, snmpd, knows which management system to send the
traps by use of a configuration file /etc/snmpd.conf.

The comments lines at the top of the /etc/snmpd.conf file explain in some detail
the configuration lines required. A section of a working snmpd.conf file can be
seen below.

/etc/snmpd.conf extract

logging file=/usr/tmp/snmpd.log enabled
logging size=10000 level=3

community public 0.0.0.0 0.0.0.0 readOnly
community ITSO 127.0.0.1 255.255.255.255 readWrite 1.17.2
community ITSO 9.67.38.71 255.255.255.255 readWrite # rs60001
community ITSO 9.24.104.28 255.255.255.255 readWrite # rs60002
community ITSO 9.24.104.23 255.255.255.255 readWrite # rs60003
community ITSO 9.24.104.27 255.255.255.255 readWrite # rs60004
community ITSO 9.67.38.67 255.255.255.255 readWrite # rs60005
community ITSO 9.24.104.0 255.255.255.0 readWrite # any itsc

view 1.17.2 system enterprises view

Avoid collisions with the machine list
trap ITSO 127.0.0.1 1.3.1 fe # loopback
trap ITSO rs60001 1.2.1 fe
trap ITSO rs60005 1.2.5 fe

#snmpd maxpacket=1024 querytimeout=120 smuxtimeout=60

smux 1.3.6.1.4.1.2.3.1.2.1.2 gated_password # gated
smux 1.3.6.1.4.1.4.3.1 # unixd
smux 1.3.6.1.4.1.2.6.12 sm6000 # Systems Monitor/6000: sysmond
smux 1.3.6.1.4.1.2.6.4.1 nv6000 # NetView for AIX: trapgend

The /etc/snmpd.conf file contains the following items:

 1. SNMP log information

 2. A list of valid community names

 3. SNMP trap destinations

 4. SMUX Agent MIB registration information

Table 9. /etc/snmpd.conf community Extract

T1U T2U T3U T4U T5U T6U T7U

community ITSO 9.24.104.0 255.255.255.0 readWrite iso.3 # ITSO

Notes:

T1UIdentifies this as a community entry in the /etc/snmp.conf file.

T2UThis is the community name of this network.

T3UThis is the desired network that will be allowed access to the MIBs
controlled by this station.

Chapter 4. Event Configuration 79

T4UThis is the mask used to AND the IP address of the requesting IP host
in order to validate the request.

T5UThis is the type of the MIB access that will be given if the ANDed result
of the requesting IP host with T4U is equal to T3U.

T6USignifies the view; that is, what section of the MIB tree can be
accessed by the requester.

T7UComments follow the # sign.

When a host makes a request to access the MIB, then the IP address of
the requesting host is ANDed with T4U. If the result is equal to T3U then
the access defined by T5U is granted to the requesting host. This
assumes that the request was made using the T2U community name.

Notes:

T1UIdentifies this as a trap entry in the /etc/snmpd.conf file.

T2UThis is the community name for the destination machine.

T3UThis is the hostname of the machine the trap will be sent to.

T4UThis is a view name. This is not used in AIX V3.

T5UThis field is used for blocking traps, the Hex ′ fe′ is converted into
binary, and each bit is associated with a trap type. (Coldstart, warmstart,
linkdown, linkup, authentication, egpneighborloss and enterprise-specific).
The value fe corresponds to ″No blocking of traps″ whereas X′be ′
(10111110 in binary) would block the warmstart trap.

Notes:

T1UIdentifies this as a smux entry in the /etc/snmpd.conf file.

T2UThis identifies the section of the MIB tree this agent is registered for.

T3UThis field is an ID tag for the agent. This is in effect a password linking
this file with /etc/snmpd.peers for authentication.

T4UComment field.

Table 10. /etc/snmpd.conf trap Extract

T1U T2U T3U T4U T5U

t rap ITSO rs60002 1.2.1 fe

Table 11. /etc/snmpd.conf SMUX Extract

T1U T2U T3U T4U

smux 1.3.6.1.4.1.2.6.12 sm6000 # AIX Systems
Monitor/6000
sysmond

80 Examples of Using NetView for AIX

4.5 NetView for AIX Events
The NetView for AIX application that displays events, using a graphical user
interface, is called nvevent.

With Version 3 of NetView for AIX a number of changes have been made to this
interface, including:

Dynamic Workspaces
These workspaces will be updated with new events as they arrive.
The previous version of NetView for AIX only allowed one dynamic
workspace; all others were static workspaces. The static workspaces
are never updated when new events arrive. The dynamic workspaces
can be used to select events from:

• A specific source

• A specific severity of event

• A specific category of event

• Filter control for the event

A number of dynamic workspaces can be opened at any one time.
For example, one dynamic window could show the events with a
severity of Critical, and another workspace could show events
generated from a specific machine.

The Events application
A number of new options have been added to the pull-down menu bar
contained in the Events window. Most of these new options will be
discussed in the following sections of this chapter.

Event Card Layout
The screen that displays the events has changed to show more of the
information contained on the cards.

The events application within NetView for AIX has a number of aspects:

 1. When NetView for AIX initially starts, the events EUI application will, by
default, be started and attached to the base of the main NetView for AIX
screen. This area is called the Control Desk. This portion of the screen can
be moved into a separate menu by pressing the middle mouse button while
the pointer is on the Control Desk bar, and then using ″drag and drop″.

 2. If NetView for AIX is started, and the Events window has been closed as
could have been done via the panel in Figure 53 on page 82, then from the
NetView for AIX pull-down menu select:

Monitor -> Events -> Current Events

Chapter 4. Event Configuration 81

Figure 53. Events Window Showing Exit (Close Events) Option

Closing via File/Exit results in stopping the nvevents task associated with the
particular Events Window.

The following is an example of this:

• First, one Map (operator) had one Events Window active:

[root@rs60003]/> ps -ef|grep nvevents
root 50822 47502 0 11:19:27 - 0:13 /usr/OV/bin/nvevents
root 51166 50121 2 14:46:02 pts/0 0:00 grep nvevents

• Then, a second Map opened an Events Window. This second Events
Window could have been initiated by the first Map operator using
approaches which will be discussed later in this chapter.

[root@rs60003]/> ps -ef|grep nvevents
root 50822 47502 1 11:19:27 - 0:13 /usr/OV/bin/nvevents
root 52392 51799 0 14:47:15 - 0:05 /usr/OV/bin/nvevents
root 54324 50121 1 14:49:24 pts/0 0:00 grep nvevents

• Next, the first Map closed its Events Window.

[root@rs60003]/> ps -ef|grep nvevents
root 50751 50121 2 14:50:21 pts/0 0:00 grep nvevents
root 52392 51799 0 14:47:15 - 0:05 /usr/OV/bin/nvevents

82 Examples of Using NetView for AIX

• Followed by the first Map re-opening its Events Window.

[root@rs60003]/> ps -ef|grep nvevents
root 50820 47502 20 14:51:38 - 0:05 /usr/OV/bin/nvevents
root 52392 51799 0 14:47:15 - 0:05 /usr/OV/bin/nvevents
root 54408 50121 1 14:51:57 pts/0 0:00 grep nvevents

 3. Rather than using Monitor - > Events - > Current Events, from the AIX
command line, the operator could type: /usr/OV/bin/nvevents &

 4. Or, if the toolbox window is present, then two approaches could be used in
conjunction with the Events icon.

a. If the Events window is not active, drag and drop the Events icon from
the toolbox icon into the Control Desk or to some open area in the
display.

b. Select (via left-button click) on a node in a submap and double click the
toolbox Events icon to open an Events Window aimed at events for the
selected node.

Figure 54 on page 83 through Figure 57 on page 86 is an example of
this.

Figure 54. A Selected Node

Chapter 4. Event Configuration 83

Figure 55. The Events Window (Main Events)

84 Examples of Using NetView for AIX

Figure 56. The Events Window (For Selected Node ′s Events)

Chapter 4. Event Configuration 85

Figure 57. Option for Closing Selected Node ′s Events. Closing only affects this set of
filtered events and does not stop nvevents as previously discussed in Figure 53 on
page 82.

The steps above begin the nvevents application, which reads the events
information from the /usr/OV/log/ovevent.log file.

86 Examples of Using NetView for AIX

Note:

If you do not want the Events window to appear when NetView for AIX is started,
then do the following:

 1. Edit the file /usr/OV/registration/C/ovsnmp/nvevents.

 2. Amend the Command line from:

• Command -Shared -Initial ″${nvevents:-/usr/OV/bin/nvevents}″;

to:

• Command -Shared ″{$nvevents:-/usr/OV/bin/nvevents}″;

 3. Restart NetView for AIX.

To start the Events window simply drag Events from the Tools window, or
optionally select Monitor-> Events->Current Events... from the NetView for AIX
pull-down menu.

The Events window display can be modified to show additional information,
including:

• The maximum number of events displayed to the user

• The maximum number of events to be loaded from ovevent.log

• The initial presentation of the events to the user (that is, card or list format)

• The name of the default filter file

• The colors and fonts on the cards

All of the above are controlled by parameters that you will find in the
/usr/lpp/X11/lib/X11/app-defaults/Nvevents file.

This file should not be directly modified but should be copied to the users home
directory and modified there. To modify the options for a particular user, do the
following:

• Change directory to the user′s $HOME directory.

• Append /usr/lpp/X11/lib/X11/app-defaults/Nvevents to the $HOME/.Xdefaults
file. If $HOME/.Xdefaults does not exist then it can be created.

• Modify the options as required using an editor such as vi.

• Save the file.

• Restart NetView for AIX.

An example of this file is provided in Appendix F, “Nvevents X11 app-defaults
File” on page 289.

4.5.1 The NetView for AIX Event Screen
Figure 58 on page 88 shows the NetView for AIX initial screen display, as
started by the /usr/OV/bin/nv6000 script. The display shows the event
configuration screen attached to the NetView for AIX′s display of the current
managed network. Throughout this document references will be made to the
pull-down menu options located on the top half of this screen.

Chapter 4. Event Configuration 87

Figure 58. An Example of NetView for AIX Init ial Screen Display

Figure 59 on page 89 shows a trap as displayed by NetView for AIX. This trap
was generated by the netmon daemon and signifies a Node Up network event.

88 Examples of Using NetView for AIX

Figure 59. An Example of NetView for AIX Event Card

The display shows the default event information. This particular event is
NetView for AIX specific. You can customize the display window to display the
required information that relates more to the specific event being logged.

As seen in Figure 59, the Event Card window provides the following:

• The top left hand corner of the card signifies the severity of the event. The
first line of the card shows the event summary.

• The three buttons located at the bottom of the event allow you to do the
following:

− Note... Allows notes to be recorded for a specific event.

− Browse MIB... Access to the machine′s MIB values.

− Highlight... Highlight the symbols on the map representing the device
that raised the trap.

Clicking on any of these buttons is a fast-track approach for making the above
operator actions. Clicking on the Highlight button brings forward a submap
containing the highlighted-device, clicking on Browse MIB brings forward the
MIB browser and clicking on Note brings forward the Note Editor.

Chapter 4. Event Configuration 89

4.5.2 Event Card Information
The information contained within the event window main section includes:

SPECIFIC : 58916864 (hex: 3830000)
The enterprise-specific trap ID for the Node Up event.

GENERIC : 6
The generic trap ID. Generic 6 means the event is an
enterprise-specific event.

CATEGORY : Status Event
Indicates that that there has been a change in the network.

ENTERPRISE : netView/6000 1.3.6.1.4.1.2.6.3.1
The enterprise-specific ID, which indicates the origin of the trap. In
this case it indicates NetView for AIX, meaning that this is an
internally-generated event.

SOURCE : Netmon
The event was raised by the netmon daemon.

HOSTNAME : mcgregor.itso.ral.ibm.com
The hostname affected by the event (for an event with an external
origin, this would be the node from which the trap originated).

SEVERITY : Indeterminate
The severity type is indeterminate.

LOGGEDTIME : 03/17/94 11:09:56
The time the event was generated.

4.6 NetView for AIX Event Configuration
NetView for AIX has a number of events initially configured. These are IBM and
vendor-specific.

When a new NetView for AIX application is installed (for example, AIX Systems
Monitor/6000), then additional enterprises, with additional enterprise-specific
events, are also configured. If the application at install time does not configure
its events (traps) it is the user′s responsibility to do so.

All the defined events for NetView for AIX, are located in the file
/usr/OV/conf/C/trapd.conf.

The Event Configuration window (Figure 62 on page 95) can be displayed from
the main NetView for AIX window, by selecting the following from the pull-down
menu:

• Options->Event Configuration->Trap Customization

• Or by typing the command:

usr/OV/bin/xnmtrap &

90 Examples of Using NetView for AIX

Figure 60. NetView for AIX Event Configuration Window

If you use the event configurator, you can browse the installed enterprise
definitions and look at their associated specific events in the Event Identification
window listing the Event Name, event number, severity, status and source.

In Figure 60, we see the definition of the Node Up event.

To list all the NetView for AIX events, type event -l (see Appendix E, “NetView
for AIX Default Events” on page 287).

The output from this command shows all the event types, their event numbers,
and associated descriptions.

There may be a requirement to add a new event to the associated enterprise.
You may also modify existing events to display more meaningful messages on
the event card.

To generate a Node Up event from the AIX command line, type:

event -l | grep ″Node Up″

Chapter 4. Event Configuration 91

This will display the line:

 NUP_EV 0058916864 3 Node Up

The number 0058916864, is the Event ID. To send this event to NetView for AIX,
type the following:

event -E 58916864

The event will be displayed in the Events window.

4.7 Defining or Modifying Events
We will now examine the actions necessary to define a new event to NetView for
AIX and look at ways to generate such an event.

4.7.1 Adding a New Enterprise
The ENTERPRISE field effectively identifies the application source of the trap. If
you have a network management application that sends traps to NetView for AIX,
then you will have to tell NetView for AIX the enterprise name, and the
enterprise ID.

These values associate an enterprise ID with an enterprise-specific MIB object.

The IBM branch of the MIB tree starts with 1.3.6.1.4.1.2. Below this tree
structure, you can find definitions for IBM6611, netView6000 and all other IBM
MIBs. The NetView for AIX MIB Browser provides a convenient way to
determine these ″dotted decimal″ values.

In the following example, two new events will be added to the NetView for AIX
enterprise:

 1. One to show that the SNA application on the RISC System/6000 has died

 2. A second to show the application daemon has been restarted

New enterprises have to be registered with the Internet Activities Board (IAB) to
ensure there are no conflicts with existing enterprises.

4.7.2 Adding New Events
The NetView for AIX enterprise name is netView6000 and the enterprise ID is
1.3.6.1.4.1.2.6.3. The generic and specific IDs are used to label individual events
within an enterprise.

In this example, we have chosen to use specific value 901 for the application
down event and 902 for the application restarted event.

If you require the events to be linked together using categories, NetView for AIX
allows user defined categories. This option is used to link events together and
makes sorting and filtering events more flexible. These are global definitions for
all specific events. To define new items do the following:

• Select Configure Categories... from the event configuration window.

• Enter into the Category field the entry Comms Application.

• Select Add followed by Close.

92 Examples of Using NetView for AIX

• The new category has now been added.

Figure 61 on page 93 shows the resulting panel.

Figure 61. Configure Categories Panel

Note: The only category that will allow color status changes on the map
symbols is the status events category.

The Configure Additional Actions... option is used in relation to the displaying
events. This will be described later in this document.

To define these new events within NetView for AIX main screen, do the following:

• Select Options->Event Configuration->Trap Customization: SNMP... from the
pull-down menus.

• Select netView6000 enterprise located in the Event Identification window. in
the Event Identification window. All the related events will appear in the
lower half of the screen as shown in Figure 60 on page 91.

• Select Add... from the Event Identification window.

• Enter SNA_EV_901 in the Event Name field.

• Select Enterprise Specific for the generic Trap.

• Enter 901 in the Specific Trap Number field.

• Enter Application Error Detected for the Event Description.

Chapter 4. Event Configuration 93

• Enter the list (if required) for individual sources (nodes) which this event
applies by keying in the hostnames followed by clicking on the Add button.
In the example the nodes with SNA applications where added, these are
rs60001, rs60002, rs60003 and rs60004.

• Click on Event Category and select Status Events.

• Click on Status and select User 1.

• Click on Severity and select Critical.

• Amend the Event Log Message to read:

ITSO APPLICATION ERROR\nDescription - $1\nIp Address - $2\n
Program - $3\nmachine location - $4\nContact - $5\n

 Dollar variables

These variables: $1, $2, etc., refer to variable information that is included
in the trap. This implies that we know the trap format in advance. In our
case this is not a problem, since we will be creating the trap ourselves.
If we were adding a trap generated by some other hardware or software
we would need to refer to the manufacturer′s specifications to determine
the variable information enclosed in it.

The ″dollar″ variables are discussed further in 4.7.3, “The Event Log
Format Field” on page 96.

• Amend the Popup Notification field to read:

901:Application Event Node $A : $1

• Enter the following text in the Command for Automatic Action field. This
option will send a mail message to the root user.

echo ″SNA Error″ | mailx -s ″Check NetView for AIX Console″ root

• Select Ok to update the event details.

• Select Apply from the Event Configuration window.

The screen will look like that in Figure 62 on page 95.

94 Examples of Using NetView for AIX

Figure 62. NetView for AIX Add/Modify Event Window

To add the second event:

 1. Select netView6000 enterprise from the Event Identification. The list of events
are displayed in the Event Identification window.

 2. Select Add...

 3. Enter SNA_EV_902 in the Event Name field.

 4. Select Enterprise Specific.

 5. Enter 902 in the Specific Trap Number field.

 6. Enter SNA APPLICATION RESTARTED for the Description.

 7. Enter rs60001 for the source followed by clicking on the Add button. In the
example the nodes with SNA applications where added, these are rs60001,
rs60002, rs60003 and rs60004.

 8. Click on Event Category and select Status Events.

 9. Click on Status and select Up.

Chapter 4. Event Configuration 95

10. Click on Severity and select Cleared.

11. Amend the Event Log Message to read:

ITSO APPLICATION RESTARTED\nDescription - $1\nIp Address - $2\n
Program - $3\nmachine location - $4\nContact - $5\n

4.7.3 The Event Log Format Field
Any text information can be entered in this field. In this example there are five
arguments passed. These will be passed from the shell script that generates the
event. Other useful variables that can be used are:

$A - The Network Name or IP address of the node that raised the
event.

$G - The Generic trap ID.
$S - The Specific trap ID
$E - The Enterprise as a text string
$e - The Enterprise as an Object ID.
$1-$n - The arguments passed to the event.

($3 holds useful information for events raised by the
the netmon daemon)

* - Displays all the variables passed to the event.
- Displays the number of variables passed to the event.
\n,\t - Inserts a newline, tab respectively.

You can read further information about the use of these variables
by pressing the Help button on the Event Configuration screen.

Figure 63. Event Log Variables

4.7.4 The Source Field
When the source character appears on the event, it is sometimes useful to
locate which program or daemon raised the event. This field is also useful when
sorting or searching for specific event types. The source in the above example
shows it to be from an application. Other source codes defined in NetView for
AIX are:

96 Examples of Using NetView for AIX

Events Sources

A - Agent
C - xnmcollect
D - Data collector
d - Demo
E - nvevents
I - IP Map
L - Load MIB
M - IP topology
N - Netmon-generated traps
n - Netmon related
O - OSI SA
P - open trap (other than IP)
r - tralertd daemon
S - Security Agent
s - spappld daemon
T - trapd daemon
t - xnmtrap
V - Vendor

4.7.5 Event Customization from the Command Line
Events can also be added using the NetView for AIX addtrap command. This is
useful in defining enterprise-specific traps from within a shell script or from the
AIX command line.

Command example

/usr/OV/bin/addtrap -n netView6000 (Enterprise name)
-l ITSOTEST (Trap Label)
-i 1.3.6.1.4.1.2.6.3 (Enterprise Id)
-g 6 (Generic Id)
-s 903 (Specific Trap)
-o A (Source-id)
-t 2 (Type Up)
-c ″Status Events″ (Event Category)
-S 0 (Severity: Cleared)
-F ″ITSO TEST $A $1 $2″ (Event Log Format)
-C some command (Optional Command)

This approach is used for inserting user application-specific information into
event configuration and for recovery of configured information when necessary;
for example, re-adding configured traps after a system crash.

4.7.6 Sample Event Generation Shell Script
Having defined what will happen when the trap arrives, we next want to send it.
The following shell script uses a function called send_trap. This script calls the
AIX NetView command snmptrap to generate an event. The script will simulate
the SNA daemon failing and then restarting.

Chapter 4. Event Configuration 97

#!/usr/bin/ksh
##
app_sendtrap using netView6000 Enterprise
Shell to send a trap to NV/6000 from a Korn Shell script
The trap format
#
##

##
#
Function send_app_trap
#
##
function send_trap
{

TRAP_TYPE=$1 # 901 or 902 (for example)
TRAP_DEST=$2 # Destination for trap

DESCRIPTION=$3 # Application Description
SNA_NODE=$4 # Ip address of the Machine
PROG_NAME=$5 # Program Name
MACHINE_LOC=$6 # Location of the machine
CONTACT=$7 # Contact Name and Telephone Number

TRAP_AGENT=`hostname` # Agent hostname

OCTET=″octetstring″ # Dummy OCTET value
MIBVAR=″1.1″ # Dummy Mib Variable

/usr/OV/bin/snmptrap $TRAP_DEST .1.3.6.1.4.1.2.6.3 \
$TRAP_AGENT 6 $TRAP_TYPE 0 \
$MIBVAR $OCTET ″$DESCRIPTION″ \
$MIBVAR $OCTET ″$SNA_NODE″ \
$MIBVAR $OCTET ″$PROG_NAME″ \
$MIBVAR $OCTET ″$MACHINE_LOC″ \
$MIBVAR $OCTET ″$CONTACT″

if [″$?″ -ne 0]
then

echo ″snmptrap failed to send trap to $TRAP_DEST\n″
exit 1

fi
}

Figure 64 (Part 1 of 2). app_sendtrap Shell Script

98 Examples of Using NetView for AIX

##
#
Main Body of script
#
##
clear

NETVIEWHOST=$1

Convert $2 to standard form.

set `host $2`
SNA_HOST=$1

echo ″Press <return> to Send Application Error Event \c″; read ans

send_trap ″901″ ″$NETVIEWHOST″ ″Daemon Down″ $SNA_HOST ″SNA″ \
″ITSC Raleigh″ ″919-301-1234″

echo $SNA_HOST

TaU /usr/OV/bin/snmptrap $TRAP_DEST .1.3.6.1.4.1.2.6.3.1 \
$TRAP_AGENT 6 58916871 1 \
.1.3.6.1.4.1.2.6.3.1.1.2.0 Integer 14 \
.1.3.6.1.4.1.2.6.3.1.1.3.0 OctetString ″$SNA_HOST″ \
.1.3.6.1.4.1.2.6.3.1.1.4.0 OctetString ″Object status is″ \
.1.3.6.1.4.1.2.6.3.1.1.5.0 OctetString Down

echo ″Press <return> to Send Application Restored Event \c″; read ans

send_trap ″902″ ″$NETVIEWHOST″ ″Daemon Restored″ $SNA_HOST ″SNA″ \
″ITSC Raleigh″ ″919-301-1234″

TaU /usr/OV/bin/snmptrap $TRAP_DEST .1.3.6.1.4.1.2.6.3.1 \
$TRAP_AGENT 6 58916871 1 \
.1.3.6.1.4.1.2.6.3.1.1.2.0 Integer 14 \
.1.3.6.1.4.1.2.6.3.1.1.3.0 OctetString ″$SNA_HOST″ \
.1.3.6.1.4.1.2.6.3.1.1.4.0 OctetString ″Object status is″ \
.1.3.6.1.4.1.2.6.3.1.1.5.0 OctetString Up

echo ″2 Events sent to $NETVIEWHOST.......″

Figure 64 (Part 2 of 2). app_sendtrap Shell Script

To execute the script, type:

app_sendtrap <NetView for AIX host name> <Node with SNA>

The following was used for this example:

app_sendtrap rs60003 rs600010

Press Enter once. Two events are displayed as seen in Figure 66 on page 101.
You will see a pop-up window appear and the symbol representing the relevant
machine change color, if:

Chapter 4. Event Configuration 99

• The submap which contains the relevant machine has the symbol
representing the machine (NetView for AIX object) controlled by Status
Source: Symbol.

The setting of the machine color is done via the snmptrap shown in TaU.

The pop-up is displayed in Figure 69 on page 103.

Status Source

The color of symbols on NetView for AIX displays is controlled by the Status
Source. You can see the Status Source by selecting a symbol with the right
mouse button and following Edit->Modify/Describe->Symbol. For the above
snmptrap to affect the color, the Status Source must be: Symbol.

Figure 65. rs600010 After snmptrap Set Object Down. rs600010 was control led in this
submap by Status Source: Symbol. This allowed the snmptrap to change the symbol′s
color.

100 Examples of Using NetView for AIX

Figure 66. NetView for AIX Selected Events - Part 1

Press Enter once more, and two more events will be displayed in the Events
window as shown in Figure 68 on page 103. This time no warning screen will
appear. The status of the symbol will now turn back to GREEN for the same
reasons as discussed previously.

Chapter 4. Event Configuration 101

Figure 67. rs600010 After snmptrap Set Object Up. rs600010 was control led in this
submap by Status Source: Symbol. This allowed the snmptrap to affect the symbol′s
color.

102 Examples of Using NetView for AIX

Figure 68. NetView for AIX Selected Events - Part 2

Figure 69. NetView for AIX Warning Screen

4.7.7 Status Source and User Symbols
This section further discusses the status source fields mentioned in 4.7.6,
“Sample Event Generation Shell Script” on page 97 and also discusses an
approach for adding user symbols to a submap via a sample set of code which
utilizes the NetView for AIX EUI API.

Chapter 4. Event Configuration 103

4.7.7.1 Symbol Status Source
In section 4.7.6, “Sample Event Generation Shell Script” on page 97 a symbol′s
Status Source was mentioned. If this field, for particular submaps which have
Status Source: Symbol, the snmptrap:

 /usr/OV/bin/snmptrap rs60003 .1.3.6.1.4.1.2.6.3.1 rs60003 6 58916871 1\
.1.3.6.1.4.1.2.6.3.1.1.2.0 Integer 14 \
.1.3.6.1.4.1.2.6.3.1.1.3.0 OctetString ″rs600010.itso.ral.ibm.com″ \
.1.3.6.1.4.1.2.6.3.1.1.4.0 OctetString ″Object status is″ \
.1.3.6.1.4.1.2.6.3.1.1.5.0 OctetString Down

will affect the color of the displayed symbol for the object:
rs600010.itso.ral.ibm.com. The Status Source must be Symbol for this to take
affect. Using this trap will affect NetView for AIX-controlled (IP) resources.
NetView for AIX, through its normal processes may set the symbol back to its
discovered status or the user may issued a trap such as:

 /usr/OV/bin/snmptrap rs60003 .1.3.6.1.4.1.2.6.3.1 rs60003 6 58916871 1\
.1.3.6.1.4.1.2.6.3.1.1.2.0 Integer 14 \
.1.3.6.1.4.1.2.6.3.1.1.3.0 OctetString ″rs600010.itso.ral.ibm.com″ \
.1.3.6.1.4.1.2.6.3.1.1.4.0 OctetString ″Object status is″ \
.1.3.6.1.4.1.2.6.3.1.1.5.0 OctetString Up

to further modify the symbol′s color.

The snmptrap above can be used to control IP status; but, remember, when so
doing you are affecting NetView for AIX-managed resources. One possible
reason for doing this may be to include user (or non-IP) status in graphical
presentations which an operator may be reviewing as a normal process. This
combination of IP and non-IP is addressed by the gtm and open topology support
of NetView for AIX which is discussed later on in this document. However, for
the example in this section we will use the graphical EUI API support in NetView
for AIX.

First, let us look at two separate submaps and see the Status Source:

104 Examples of Using NetView for AIX

Figure 70. IP Internet Submap

In the above submap, right-button clicking on rs600010 leads to the following:

Chapter 4. Event Configuration 105

Figure 71. IP Internet Submap Heading Toward Symbol

Clicking on Symbol presents the following panel:

106 Examples of Using NetView for AIX

Figure 72. IP Internet Submap Symbol Description

Status Source: Compound (Propagated) would not result in this submap′s symbol
being affected by the previously discussed snmptrap.

A second submap is in the following figure.

Chapter 4. Event Configuration 107

Figure 73. IPMap - Network: Submap

In the above submap, right-button clicking on rs600010 and clicking on Symbol
presents the following panel:

108 Examples of Using NetView for AIX

Figure 74. IPMap - Network: Submap Symbol Description

Status Source: Symbol would result in this submap′s symbol being affected by
the previously discussed snmptrap.

The trap could be triggered in a shell such as in the following figure.

Note: You are affecting IP status of a NetView for AIX-managed object. This
may result in the operator having a view of an object′s status which is not as
expected from a hardware or similar point of view until the status is restored by
NetView for AIX discovery or the user.

Examples of using the following shell are:

set_ip_status rs60003 rs600010 Down

set_ip_status rs60003 rs600010 Up

Chapter 4. Event Configuration 109

#!/usr/bin/ksh
#
set_ip_status
Used to set IP status. It will affect color on symbols controlled
by Status Source: Symbol
#
Note: You are affecting IP-managed objects!
#
Parameters: $1 = Manager Machine
$2 = Symbol name (the following `host`
resolves the object name
$3 = Status such as Up, Down, User1, etc.
#
#

clear

NETVIEWHOST=$1
FUNCTION=$3

Convert $2 to standard form.

set `host $2`
SNA_HOST=$1

/usr/OV/bin/snmptrap $NETVIEWHOST .1.3.6.1.4.1.2.6.3.1 \
$NETVIEWHOST 6 58916871 1 \
.1.3.6.1.4.1.2.6.3.1.1.2.0 Integer 14 \
.1.3.6.1.4.1.2.6.3.1.1.3.0 OctetString ″$SNA_HOST″ \
.1.3.6.1.4.1.2.6.3.1.1.4.0 OctetString ″Object status is″ \
.1.3.6.1.4.1.2.6.3.1.1.5.0 OctetString $FUNCTION

Figure 75. set_ip_status

It is possible that, for the example discussed in Section 4.7.6, “Sample Event
Generation Shell Script” on page 97 the user may choose to include a non-IP
symbol in an IP-managed Submap. This could be done in a number of ways
including the normal NetView for AIX operator pull-downs such as
Edit/Add/Object.

In the following example the user-written implementation of NetView for AIX
graphics EUI API support: wtdriver6/wteuiap6 is shown. Refer to Chapter 7,
“wtdriver6/wteuiap6 Sample NetView for AIX EUI API” on page 217 for an
overview of this user-written code.

In the example discussed in Section 4.7.6, “Sample Event Generation Shell
Script” on page 97 it was indicated that an application (SNA) was simulated
up/down.

The operator may benefit from seeing on the submap for the IP node used in this
example (rs600010) a symbol representing ″sna″. The following figures show
this.

110 Examples of Using NetView for AIX

Figure 76. rs600010 Submap Without sna Symbol

Issuing the following commands add the ″sna″ symbol to the submap and sets
the added symbol ″up″ to give it a normal color. wtdriver6 calls wteuiap6 and
executes the following requests.

wtdriver6 -f rs600010 add sna ap
wtdriver6 -f rs600010 set sna up

The ″-f″ flag tells wtdriver6/wteuiap6 to focus on the rs600010 submap for the
particular command. The following figure shows the resultant submap.

Chapter 4. Event Configuration 111

Figure 77. rs600010 Submap with sna Symbol

If the previously discussed shell was modified to include:

wtdriver6 -f rs600010 set sna up

or

wtdriver6 -f rs600010 set sna down

The sna symbol would reflect the particular color/status and rs600010 submaps
which had Status Source: Compound (Propagated) (see Figure 72 on page 107)
would be affected.

In addition, it is possible that the user would like to enter a user text field
associated with the ″sna″ object in the NetView for AIX object database. The
following command is an example of doing this:

wtdriver6 assoc rs600010 ″Some String″ ″sna is managed by John Anderson,
 Call: 301-2308″

Issuing the normal NetView for AIX command ovobjprint results in the following:

112 Examples of Using NetView for AIX

ovobjprint -s sna

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name ″sna″
14 OVW Maps Exists 1
15 OVW Maps Managed 1
66 isSoftware TRUE
129 Software Status ″down″
135 Some String ″sna is managed by John Anderson,

Call: 301-2308″

The example discussed in this section can be used to show one level of
integration between IP and non-IP resources. Another approach is discussed
later in this document using gtm and open topology support in NetView for AIX.

4.7.8 Adding a New Enterprise with an Associated Event
In the previous example, the enterprise for netView6000 was used. The
enterprise was: 1.3.6.1.4.1.2.6.3.1 and snmptrap issued traps within that
enterprise. Generic type 6, specific trap numbers 901 and 902 were defined by
the user and trap number 58916871 was pre-defined by NetView for AIX.

Instead of using the netView6000 enterprise, the following example shows how to
define a new enterprise and add a specific event. The ITSO in Raleigh has an
authorized MIB definition enterprise Id of 1.3.6.1.4.1.2.8.1. The example event
defined below is used for reporting DCE errors generated on the DCE server. To
add the new configuration items do the following:

• Select Options->Event Configuration->Trap Customization... from the
NetView for AIX pull-down menu.

• Select Add... from the Enterprise Identification window.

• Enter itso_raleigh in the Enterprise Name field.

• Enter 1.3.6.1.4.1.2.8.1 for the enterprise Id.

• Select Add.

• Click on itso_raleigh enterprise.

• Select Add... from the Event Identification window.

• Select Add... from the Event Identification window.

• Enter DCE_910 in the Event Name field.

• Select Enterprise Specific for the generic Trap.

• Enter 910 in the Specific Trap Number field.

• Enter DCE Agent Error for the Event Description.

• Leave the source field blank.

• Click on Event Category and select Application.

• Click on Status and select Default Status.

• Click on Severity and select Major.

• Amend the Event Log Message to read:

ITSO DCE ERROR\nDCE Cell Name - $1\nDCE Agent - $2\n

• Select Ok and apply from the Event Configuration window.

Chapter 4. Event Configuration 113

The event is now configured. To test the event type in the following command:

snmptrap `hostname` .1.3.6.1.4.1.2.8.1 `hostname` 6 910 0 \
1.1 octetstring `getcellname` \
1.1 octetstring ″Security″

The event will appear as shown in Figure 78.

Figure 78. AIX DCE Event Display

4.7.8.1 Example of Using the ITSO Enterprise
In section 4.7.6, “Sample Event Generation Shell Script” on page 97 an example
was shown using snmptrap to interface with NetView for AIX via events used
within its enterprise.

The following example is the same application but using the ITSO enterprise.
The shell script uses a function called send_trap and, as shown in the following
figure, the enterprise used in the snmptrap to generate an event was modified
for the ITSO enterprise TaU. Other behavior of the previous example is the same.
Note that the shell continues to use the netView6000 enterprise TbU for the trap
which controls the color of the NetView for AIX-managed object.

114 Examples of Using NetView for AIX

#!/usr/bin/ksh
##
app_sendtrap using ITSO Enterprise
Shell to send a trap to NV/6000 from a Korn Shell script
The trap format
#
##

##
#
Function send_app_trap
#
##
function send_trap
{

TRAP_TYPE=$1 # 901 or 902 (for example)
TRAP_DEST=$2 # Destination for trap

DESCRIPTION=$3 # Application Description
SNA_NODE=$4 # Ip address of the Machine
PROG_NAME=$5 # Program Name
MACHINE_LOC=$6 # Location of the machine
CONTACT=$7 # Contact Name and Telephone Number

TRAP_AGENT=`hostname` # Agent hostname

OCTET=″octetstring″ # Dummy OCTET value
MIBVAR=″1.1″ # Dummy Mib Variable
Use ITSO Enterprise
#
TaU /usr/OV/bin/snmptrap $TRAP_DEST .1.3.6.1.4.1.2.8.1 \

$TRAP_AGENT 6 $TRAP_TYPE 0 \
$MIBVAR $OCTET ″$DESCRIPTION″ \
$MIBVAR $OCTET ″$SNA_NODE″ \
$MIBVAR $OCTET ″$PROG_NAME″ \
$MIBVAR $OCTET ″$MACHINE_LOC″ \
$MIBVAR $OCTET ″$CONTACT″

if [″$?″ -ne 0]
then

echo ″snmptrap failed to send trap to $TRAP_DEST\n″
exit 1

fi
}

Figure 79 (Part 1 of 2). app_sendtrap_itso_enterprise Shell Script

Chapter 4. Event Configuration 115

##
#
Main Body of script
#
##
clear

NETVIEWHOST=$1

Convert $2 to standard form.

set `host $2`
SNA_HOST=$1

echo ″Press <return> to Send Application Error Event \c″; read ans

send_trap ″901″ ″$NETVIEWHOST″ ″Daemon Down″ $SNA_HOST ″SNA″ \
″ITSC Raleigh″ ″919-301-1234″

echo $SNA_HOST

TbU /usr/OV/bin/snmptrap $TRAP_DEST .1.3.6.1.4.1.2.6.3.1 \
$TRAP_AGENT 6 58916871 1 \
.1.3.6.1.4.1.2.6.3.1.1.2.0 Integer 14 \
.1.3.6.1.4.1.2.6.3.1.1.3.0 OctetString ″$SNA_HOST″ \
.1.3.6.1.4.1.2.6.3.1.1.4.0 OctetString ″Object status is″ \
.1.3.6.1.4.1.2.6.3.1.1.5.0 OctetString Down

echo ″Press <return> to Send Application Restored Event \c″; read ans

send_trap ″902″ ″$NETVIEWHOST″ ″Daemon Restored″ $SNA_HOST ″SNA″ \
″ITSC Raleigh″ ″919-301-1234″

TbU /usr/OV/bin/snmptrap $TRAP_DEST .1.3.6.1.4.1.2.6.3.1 \
$TRAP_AGENT 6 58916871 1 \
.1.3.6.1.4.1.2.6.3.1.1.2.0 Integer 14 \
.1.3.6.1.4.1.2.6.3.1.1.3.0 OctetString ″$SNA_HOST″ \
.1.3.6.1.4.1.2.6.3.1.1.4.0 OctetString ″Object status is″ \
.1.3.6.1.4.1.2.6.3.1.1.5.0 OctetString Up

echo ″2 Events sent to $NETVIEWHOST.......″

Figure 79 (Part 2 of 2). app_sendtrap_itso_enterprise Shell Script

The script was executed the same way as previously discussed:

app_sendtrap <NetView for AIX host name> <Node with SNA>

The following was used for this example:

app_sendtrap rs60003 rs600010

The following figures show information related to this example.

First, the ITSO enterprise and specific traps have been added to NetView for AIX
using event configuration support.

116 Examples of Using NetView for AIX

Figure 80. itso.raleigh Enterprise and Specific Events Used in this Example

If the enterprise and/or specific traps arrive at NetView for AIX without being
defined, information to the operator would show up as in the following figure.

Chapter 4. Event Configuration 117

Figure 81. Unknown Trap Arr ived at NetView for AIX

The following figure shows the two itso.raleigh enterprise traps from this
example.

118 Examples of Using NetView for AIX

Figure 82. itso.raleigh Enterprise and Specific Events Arr ive

The following figure shows the two previously-discussed netView6000 traps
which were used to set the NetView for AIX-managed resource Down and Up.

Chapter 4. Event Configuration 119

Figure 83. netView6000 Enterprise and Specific Events Arr ive

The following figure shows the four traps involved in this example.

120 Examples of Using NetView for AIX

Figure 84. netView6000 Enterprise and itso.raleigh Specific Events Arr ive

In some cases (for example if an installed product is part of the NetView
Association) an application′s enterprise and specific traps plus, possibly, its MIB
description will be included as normal support in NetView for AIX. If not, it is the
user ′s responsibility to use event configuration and MIB loader support to
accomplish these acts.

4.8 NetView for AIX Filters
If a large number of events are being received by NetView for AIX, it may be
necessary to filter out the unwanted ones.

Event filters are configured for a number of reasons, such as:

• To select which events are displayed by the nvevents application

• To select which events are displayed in each dynamic workspace

• To select which events are converted into alerts and sent to S/390 NetView

NetView for AIX has two types of filters, simple and compound. The simple filter
is an expression that includes SNMP criteria, whereas the compound filter is
composed of a number of simple filter expressions, and uses the logical
operators AND, OR and NOT. Both filter types are edited using the NetView for
AIX filter editor executed from the pull-down menu. You should not amend the

Chapter 4. Event Configuration 121

filter file directly using an AIX editor such as vi. When multiple simple filters are
activated they use the logical OR operator. If you are using more than one filter
at a time, you should create a combined filter for more effective trap exclusion.

The filter configuration files are located in the directory /usr/OV/filters. The
default file is called filter.samples.

The NetView for AIX filtering option supplies the following functions:

• Filtering by event content criteria

• Filtering by event frequency

• Filtering by hostname or IP address

• Control of filter activation by start and stop times

4.8.1 Filter Editor Screen
To start the filter editor application, do one of the following:

• Select Tools -> Filter Editor, from the AIX NetView for AIX pull-down menu

 or

• Type /usr/OV/bin/filtered from the command line.

The screen will look similar to Figure 85.

Figure 85. Filter Editor Selection Screen

For this example, we will create a new filter to stop the event ″902″ from being
displayed on the Events window. Follow the procedure below:

• Select Add Simple.

• Enter the Filter Name: application_started.

• Enter the Description: Filter for Application Started Events.

• Select Events not Equal to Selected.

122 Examples of Using NetView for AIX

• Select Add/Modify...

The Enterprise Specific Trap Selection menu now appears, as can be seen in
Figure 86.

Figure 86. The Enterprise-Specific Trap Selection Window

• Select enterprise Name netView6000.

• Select Generic trap 6.

• Select Specific trap 902.

• Now press Select, Apply and OK.

• Select any specific hostnames or IP addresses required. In the example the
machine rs60003 was added to the field Name or IP Address. This was done
by selecting from Objects equal to list, typing in rs60003.itso.ral.ibm.com as
the Name or IP Address, and then pressing Add to list.

• Select OK.

An example of the filter editor screen is shown in Figure 87 on page 124.

Chapter 4. Event Configuration 123

Figure 87. NetView for AIX Simple Filter Editor Screen

4.8.2 Activating a Filter
Once the filter has been defined, it needs to be activated for the current Events
window. This is done as follows:

• Select Options-> Filter Control in the Events Display.

• Select the application_started filter from the available filters list.

• Select Activate.

• Select Close.

This can be seen in the screen in Figure 88 on page 125.

124 Examples of Using NetView for AIX

Figure 88. Filter Control Screen

The filter is now activated. To to test it, re-run the app_sendtrap shell script as
discussed previously:

app_sendtrap rs60003 rs600010

You will notice that only the event defined for ″Application Down″ (901) wil l
appear in this events window and event 902 will be filtered.

Note: This approach only affected this events window. It was not a global filter
or, for example, did not affect the event 902 from being converted to an alert and
being passed to S/390 NetView. Notice also that now events will be seen only
from the node we selected; if the filter′s rule for Event Identification or Object
Identification (refer to Figure 87 on page 124) is not met, the event will be
bypassed for the filtered nvevents/operator.

The active filter for the operator is kept in the operator′s home directory, in for
example:

 /.root.events (root = userid)

/usr/OV/filters/filters.samples application_started

The above is used for each initiation of nvevents for the particular userid (root, in
the above example).

If we wanted a more complex behavior (for example, to pass every trap except
902 from rs60002, plus any trap from any other node) we would have to combine
simple filters together. It is possible to activate multiple simple filters or to
combine simple filters together into a complex filter.

To de-activate the filter:

• Select Options-> Filter Control.

• Select application_started from the active filter list.

• Select Deactivate.

Chapter 4. Event Configuration 125

• Select Close.

The filter is now deactivated. To to test it, re-run the app_sendtrap and you will
notice that both events, 901 and 902, will appear.

4.8.3 Using the Filter APIs
We have demonstrated the nvevents application using filters, but in fact filters
can be used by any application using the event APIs.

The example that follows shows how a C program can register with the ovesmd
daemon, and wait for events to arrive. When an event arrives, a shell script is
executed to warn the user that the application trap 901 has arrived. This is
useful if the NetView for AIX daemons are running but the GUI is not available. It
also allows more selectivity than the automation afforded by the ″Command for
Automatic Action″ option (see Figure 62 on page 95), since nodes or lists of
nodes can be specified in the filter definition (see rs60003.itso.ral.ibm.com in
″List of Objects″ in Figure 87 on page 124).

┌─────────┐ ┌─────────┐ . . . ┌──────────┐
│ Appl ├───.│ snmpd ├──────.. IP .──────.│ pmd │
│ code ├─┐ │ │ ┌───.. n/w .──────.│ │
└─────────┘ │ └─────────┘ │ . . . └─┬──────┬─┘

│ ┌─────────┐ │ ┌─────┘ └──────┐
└─.│ Sysmon ├──┘ │ │

│ │ │ ┌───────┐ |
└─────────┘ │ │ trapd.│ │

│ │ conf │ │
│ └─┬───┬─┘ │
(│ │ (

┌──────────┐ │ │ ┌──────────┐
│ trapd ├──┘ └──┤ ovesmd │
└──────────┘ └──────────┘
-------------filter API′ s-------------
┌──────────┐ ┌──────────┐ ┌──────────┐
│ wtevent1 │ │ nvevents │ │ tralertd │
└──────────┘ └──────────┘ └────┬─────┘

(
. . .
. SNA .
. n/w .
. . .
│
(

┌─────────────┐
│S/390 Netview│
│ h/w mon │
└─────────────┘

Figure 89. Configuration/Filtering Points for Events

The sample C program will register with ovesmd and wait for the event ″902″.
When this event arrives a script will be executed to warn the operator. Create a
new filter for event 902 as follows:

• Select Tools> Filter Editor.

• Select Add Simple.

126 Examples of Using NetView for AIX

• Enter the Filter Name: event_902.

• Enter the Description: Filter for event 902.

• Select Events Equal to Selected.

• Select Add/Modify....

The enterprise-specific trap selection menu now appears, as can be seen in
Figure 86 on page 123.

• Select enterprise Name netView6000.

• Select Generic trap 6.

• Select Specific trap 902.

• Now press Select, Apply and OK.

• Select OK.

For this sample program see Figure 90.

/***/
/***/
/* Example Program to activate a filter and execute a command */
/* on reception. */
/* */
/* AUTHORs Rob Macgregor and Paul Fearn */
/* IBM UK */
/***/
/***/

#include <nvFilter.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <OV/OVsnmp.h>

/* Function for call back when trap arrives */
void trap_arrived(OVsnmpSession *session,

OVsnmpPdu *trap, char * shell_cmd)
{

system(shell_cmd) ;
}

int main(int argc, char **argv)
{

int errcode,i ;
OVsnmpSession *snmp_session ;
OVsnmpPdu *trap_pdu ;

 struct FilterNode *fptr ;
 char filter_file[80] ;
 char *filter_rule ;
 char filter_desc[256] ;
 int filter_rule_len=0 ;
 int expand=1 ;

if (argc != 3)
{

printf(″Usage: wtevent1 <filtername> <command_to_run>\n″) ;
exit(-1) ;

}

/* Set up FilterNode structure */
fptr = (struct FilterNode *) malloc(sizeof (struct FilterNode));
fptr->FilterName = argv[1] ;
fptr->FilterDescription = filter_desc ;

strcpy(filter_file , ″ / usr/OV/filters/filter.samples″) ;

/* Find length of filter rule and allocate buffer to put filter text in*/
 errcode = nvFilterGet(fptr , filter_file ,

NULL , &filter_rule_len , expand) ;

filter_rule = malloc(filter_rule_len+1) ;

Figure 90 (Part 1 of 2). wtevent1.c Sample Program

Chapter 4. Event Configuration 127

/* Get filter text */
if ((errcode = nvFilterGet(fptr , filter_file ,

filter_rule , &filter_rule_len , expand)) !=0)
{

printf (″Cannot load filter rule %s\n″ , fptr->FilterName) ;
printf (″Reason - %s\n″ , nvFilterErrorMsg(errcode)) ;
exit(2) ;

}

/* Next we will wait for an event to pass the filter, invoking routine
trap_arrived when a trap arrives */

printf(″nvFilterGet got: %s\n″ , filter_rule);

if ((snmp_session = nvSnmpTrapOpenFilter(NULL, NULL, filter_rule))
 == NULL) {

perror(″snmp session setup failed\n″) ;
printf(″ errno=%d\n″ , errno);
printf(″ OVsnmpErrno=%d => %s\n″ ,

OVsnmpErrno, OVsnmpErrString(OVsnmpErrno));
printf(″ nvSnmpErrno=%d => %s\n″ ,

nvSnmpErrno, OVsnmpErrString(nvSnmpErrno));
printf(″ nvSnmpSubsys=%d\n″ , nvSnmpSubsys);
exit(2) ;

}

while(1) {
if ((trap_pdu = OVsnmpRecv(snmp_session)) == NULL) {

printf(″OVsnmpRecv failed. Error - %d\n″ , OVsnmpErrno) ;
exit(2) ;

}

trap_arrived(snmp_session, trap_pdu, argv[2]);
OVsnmpFreePdu(trap_pdu) ;

}

sleep(3);
OVsnmpClose(snmp_session) ;

exit(0) ;
}

Figure 90 (Part 2 of 2). wtevent1.c Sample Program

To execute the program from an AIX window type:

wtevent1 event_902 ″ /usr/OV/bin/ovxbeep 902″ &

where event_902 is the name of the filter, and ovxbeep is the command executed
when this 902 event is received by the program.

The program will show, via printf:

 nvFilterGet got: ((CLASS=1.3.6.1.4.1.2.6.3 && (SNMP_SPECIFIC=902)))

To test this, re-run the app_sendtrap script as discussed previously:

app_sendtrap rs60003 rs600010

A red pop-up window displaying the number 902, signifying that this event has
been received, will be displayed by the program.

Leave the program running and exit from the NetView for AIX EUI. Re-run
app_sendtrap as above and the filter-program window will still appear. This
example has given us a way to notify the user of a problem, or to initiate some
automatic action, even when the NetView for AIX GUI is not available.

128 Examples of Using NetView for AIX

4.9 Dynamic Workspaces in NetView for AIX
NetView for AIX now allows for the definition of multiple dynamic workspaces.
This is in addition to the static workspaces available in AIX NetView/6000 V2R1.

You can have a number of event workspaces open concurrently, all of which
could have different options, such as the filters applied to the events in the
workspace window. The following example shows two dynamic workspaces,
with events selected on the following basis:

 1. All events for machine rs60002 except 902s (application started)

 2. All critical events from the network

4.9.1 Dynamic Workspace Creation for Example 1
Doing the following from the Events Display Application Main Workspace (the
primary Control Desk menu):

• Select Create-> Dynamic Workspace....

This will result in the panel shown in Figure 91.

Figure 91. The Dynamic Workspace Panel

From the dynamic workspace panel, clicking on the Category button results in
the following panel.

Chapter 4. Event Configuration 129

Figure 92. Selecting From Category in Dynamic Workspace Panel

Then, continuing on as follows will result in a dynamic workspace being created.

• Select Status Events.

• Select Filter Activation.

• Select application_started.

• Select Activate.

• Select Close.

• Select OK.

A dynamic workspace will now be created, as shown in Figure 93 on page 131.

130 Examples of Using NetView for AIX

Figure 93. Dynamic Workspace Example 1

This shows the Status Events for rs60002 as requested in the filter
″application_started″. In the panel presented as in Figure 91 on page 129, you
could qualify the selected events by entering something in the ″Enter string to
filter:″ field, such as: ITSO. This would have shown only events which contained
the text: ITSO.

4.9.2 Dynamic Workspace Creation for Example 2
Do the following from the Events Display Application Main Workspace (the
primary Control Desk menu):

• Select Create->Dynamic Workspace....

You will then see the panel as in Figure 91 on page 129.

• Select Critical

• Select OK

This will display all critical events from managed nodes in the network.

Other examples might include selecting events from a particular source. All
netmon events can be selected by Netmon (N) from the Select Event Source
panel displayed by selecting Dynamic Workspace-> Select....

To toggle between the workspaces, click on the Events icons located in the
Control Desk window.

The dynamic workspaces can be relocated by clicking the middle mouse button
on the title portion of the event window, and then using drag and drop.

The following two figures indicate the status of two different workspaces and
indicate the status of filters for each workspace.

Chapter 4. Event Configuration 131

Figure 94. Options - > Show Status root.events1. No active filters are shown as in
progress.

132 Examples of Using NetView for AIX

Figure 95. Options - > Show Status root.events2. Indicating application_started fi l ter is
active.

4.9.3 Searching for Events in the Current Event Workspace
It is possible with NetView for AIX to search by criteria or to search by filter.

4.9.4 Searching by Criteria
From an events Workspace:

• Select Search.

• Select By Criteria.

You will then see the panel as displayed in Figure 96 on page 134.

Chapter 4. Event Configuration 133

Figure 96. The Search by Criteria Window

• Select Category.

• Select Status Events.

• Select Severity.

• Select Critical.

• Select Create Workspace.

• Select Apply.

A static workspace is now created, as in the example in Figure 97 on page 134.

Figure 97. A Static Window Created with a Search by Criteria

134 Examples of Using NetView for AIX

4.9.5 Searching by Filter
From an events workspace:

• Select Search.

• Select By Filter.

• Select application_started.

• Select Activate.

This process will highlight all the events cards that have passed this filter.
You can then create a static workspace, containing these selected cards. To
do this:

 1. Select Create.

 2. Select Static Workspace.

 3. Select Selected.

This then creates the static workspace.

4.10 Displaying Event Information
NetView for AIX will sometimes receive a large number of events generated from
the managed network. While viewing the events a number of pre-defined actions
can be executed; for example, sorting and printing events.

The following example shows how to display the number of SNA events
generated and sorted by nodename.

To define such an example, do the following:

• Select Options->Event Configuration->Trap Cust.. from the main NetView for
AIX screen.

• Select Configure Additional Actions...

• Click on Clear Fields.

• Enter Display ITSO SNA Event Statistics in the Title for Action field.

• Enter rae_oper.sh in the command field. See Figure 100 on page 138.

• Enter 20s for the maximum time to wait.

• Enter Show Specific ITSO Events Relating to SNA App.. in the Description
field.

See Figure 98 on page 136.

• Click on Apply followed by Cancel.

• Click on Apply on the Event Configuration window.

Chapter 4. Event Configuration 135

Figure 98. Configure Additional Actions for Operator

The new operator option is now defined. To test the new option: from the events
display window select from within the Control Desk:

• Options->Additional Actions->All.

• Select Display ITSO SNA Event Statistics from the available actions list.

• Select Apply. This will display the results similar to screen shown in
Figure 99 on page 137.

• Click on Close when complete.

136 Examples of Using NetView for AIX

Figure 99. The Output from the Calculation of SNA Events

The sample script has been modified from the existing NetView for AIX command
freqSortEnvt to show how to display specific types of events for specific
machines.

For this sample script see Figure 100 on page 138.

Chapter 4. Event Configuration 137

#!/bin/sh
##
Script Based on the NetView for AIX
/usr/OV/bin/freqSortEvnt script to show the example
Modified By P. Fearn
##

#
NAME=`basename $0`
TMP=/tmp/${NAME}$$ # Temporary file
TITLE=″SNA Event Details for ITSO Servers″
SORTCOLUMN2=9
AWK=awk
set -e # exit if we encounter an error

Begin Awk Script

$AWK ′ BEGIN{
num=0
create heading line
SOURCEWIDTH=25
OIDWIDTH=30

printf(″Frequency″)
printf(″ SNA Source ″)
printf(″ (Generic Specific) Object Identifier First Seen Message\n)

}
{

#
make a unique ″key″ depending on how we are to sort
#
OID = $1
GEN = $2
SPEC = $3
SRC = $10
if (″ ′ ″ $1″′″ == ″-s″)

KEY=SRC # source field is key
else {

NODESTR=sprintf(″%-15.15s ″ , SRC) # include source in key
Build long key string
KEY=sprintf(″%s%7d %8d %-30s″ , NODESTR, GEN, SPEC, OID);

}
if (freqArray[KEY] == 0) {

if (″ ′ ″ $1″′″ != ″-s″) {
for (i=1; i<=10; i++)

 $i=″″
sub(″ *″ , ″ ″)
sampleMsgArray•num“ = $0

}
keyArray•num++“ = KEY # Have not seen this keyword before

}
freqArray•KEY“++

}
END {

for (i=0; i<num; i++) {
key = keyArray•i“
printf(″%9d %s″ , freqArray•key“, key)
if (″ ′ ″ $1″′″ == ″-s″)

printf(″\n″) ;
else

printf(″ %s\n″ , sampleMsgArray•i“);
}

}′ > $TMP
#
We succeeded. Run the command in the background so we can return successfully
#

(/usr/OV/bin/xnmappmon -commandTitle ″$TITLE″ -commandHeading ″$HEADING″ \
-geometry 700x400 -sortColumn1 1 -sortColumn2 9 \
-headingLine 1 -sort -reverseSort -cmd grep SNA $TMP) &

Figure 100. rae_oper.sh Script

138 Examples of Using NetView for AIX

4.11 Event Log
All the events that are received are logged in the file /usr/OV/log/ovevent.log.

This file is regularly monitored for its size, as it will grow quite quickly
depending on the number of events being raised. NetView for AIX will archive
the log file /usr/OV/log/ovevent.log when it reaches a maximum number of bytes
which can be modified by the user. The archive file is called
/usr/OV/log/ovevent.log.BAK.. We suggest that you use CRON to journal this
archive file.

You can change the size of the ovevent.log file, by selecting the following options
from the Events History Application Main Workspace pull-down menus. Events
History is accessed from the main Root pull-down or by dragging Events History
from the Tools window.

• Select Monitor-> Events-> Event History.

This displays the Event History window.

• Select Options->Set Log Size.

Modify the field New Maximum Event Log Size in Kb to the required value up to
a maximum of 2MB.

• Select OK.

4.12 Trap to Alert Conversion
This chapter details the requirements for sending events to S/390 NetView. In
addition to NetView for AIX, the AIX Service Point application and SNA services
are required to achieve this.

In our sample environment, we used an LU6.2 SNA connection from the RISC
System/6000 to the MVS/ESA host. This provided the transport services required
to exchange status and commands between the hosts.

With this connection, it is possible to:

 1. Send NetView for AIX events to S/390 NetView.

 2. Send messages, using (for example) a user-written routine: nvsendmsg from
the RISC System/6000 to a S/390 NetView operator:

nvsendmsg S/390 NetView_operator_id {′ message text′ }

 3. Send commands from S/390 NetView to execute on the RISC System/6000.

When NetView for AIX is involved, the daemons spappld and tralertd are
required to be running, as are the AIX NetView Service Point daemons.

To check that the required daemons are running, use SMIT or enter the
commands:

ovstatus tralertd
ovstatus spappld
/usr/lpp/nvix/scripts/nvix_control status

Refer to the AIX NetView Service Point Installation, Operation and Programming
Guide, SC31-6120 and IBM NetView for AIX and the Host Connection, SC31-6235
for additional information.

Chapter 4. Event Configuration 139

Messages and commands are carried to and from the S/390 NetView host in a
structured format, using Network Management Vector Transport or NMVTs.
NMVTs are made up of subvectors, and the different subvectors have different
uses.

NMVTs that carry events from the RISC System/6000 to S/390 NetView, can be
viewed by a S/390 NetView operator using the hardware monitor (NPDA).

The details of the NetView for AIX event as it passes to S/390 NetView, are
carried in Code Points within the message NMVT. These code point numbers are
translated back into meaningful text by the S/390 NetView hardware monitor.

In the remainder of this chapter, the term: alert is meant as the NMVT which
results from trap-to-alert conversion from NetView for AIX.

If an AIX system is configured to send alerts to the main frame, it is called a
service point.

The flow of NMVTs can be supported by SNA SSCP-PU or LU6.2.

Commands are sent from a S/390 NetView operator or exec, via the RUNCMD
SPCS command. This generates a command NMVT which is received by the
NetView for AIX spappld daemon, which then sends the command to the service
point application that is defined in its daemon configuration.

4.13 Host Interaction Examples
In these examples we will:

 1. Send a NetView for AIX event to S/390 NetView.

 2. Have S/390 NetView respond to a NetView for AIX event.

 3. Send some mainframe status to NetView for AIX.

 4. Have NetView for AIX respond to a S/390 NetView event.

This will illustrate how S/390 NetView and NetView for AIX can be either the
manager or the agent.

4.13.1 Connection with RISC System/6000 Service Point and S/390 NetView
To use AIX NetView Service Point in conjunction with S/390 NetView, it is
necessary to configure AIX SNA profiles which can be used in conjunction with
S/390 definitions.

Appendix G, “Selected AIX SNA Server Profiles” on page 291 contains sample
AIX SNA Server/6000 definitions which were used for this project′s LU 6.2
connection.

4.13.2 Sending a NetView for AIX Event to S/390 NetView
Earlier, we discussed the event: 901. This event, when converted by NetView for
AIX into an NMVT(alert) from a trap, is uncustomized; that is, an alert with
default information attached.

We use app_sendtrap as discussed previously and when NetView for AIX
processes the trap, the trap is converted to an NMVT/alert and as a result of

140 Examples of Using NetView for AIX

this, we see the following alert appear in S/390 NetView hardware monitor, as in
Figure 101 on page 141.

] ^
 N E T V I E W SESSION DOMAIN: RAPAN WTWKSH6 11/17/94 14:31:15
 NPDA-43S * EVENT DETAIL * PAGE 1 OF 3

RAPAN RA6003CP RS60003T RS60003 RS60003
+--------+ +--------+ +--------+ +--------+

DOMAIN | SP |---| TP |---| DEV |---| DEV |
+--------+ +--------+ +--------+ +--------+

 DATE/TIME: RECORDED - 11/17 14:30 CREATED - 11/17/94 14:29:19

 EVENT TYPE: UNKNOWN

 DESCRIPTION: SNMP RESOURCE PROBLEM

 PROBABLE CAUSES:
UNDETERMINED

 ENTER A (ACTION) OR DM (DETAIL MENU)

 ???
CMD==>_ `

Figure 101. The S/390 NetView View of an Uncustomized SNMP Alert

Looking at the event in more detail, we can see what is shown in Figure 102.

] ^
 N E T V I E W SESSION DOMAIN: RAPAN WTWKSH6 11/17/94 14:31:25
 NPDA-43S * EVENT DETAIL * PAGES 2 and 3

RAPAN RA6003CP RS60003T RS60003 RS60003
+--------+ +--------+ +--------+ +--------+

DOMAIN | SP |---| TP |---| DEV |---| DEV |
+--------+ +--------+ +--------+ +--------+

QUALIFIERS:
1) LOG ID 2ECBAF0F00000000
2) ENTERPRISE netView6000
3) SNMP GENERIC-TRAP NUMBER ENTERPRISE SPECIFIC
4) SNMP GENERIC-TRAP NUMBER 902
5) SNMP MIB VARIABLE NAME .1.3.6.1.2.1.1.1
6) SNMP MIB VARIABLE VALUE Daemon Restored
7) SNMP MIB VARIABLE NAME .1.3.6.1.2.1.1.1
8) SNMP MIB VARIABLE VALUE rs600010.itso.ral.ibm.com
9) SNMP MIB VARIABLE NAME .1.3.6.1.2.1.1.1

 UNIQUE ALERT IDENTIFIER: PRODUCT ID - 5696-7310 ALERT ID - DDB3159A

 ENTER A (ACTION) OR DM (DETAIL MENU)

 ???
CMD==>_ `

Figure 102. Alert Detail with No Customization

Chapter 4. Event Configuration 141

4.13.3 Customizing NetView for AIX Aimed at S/390 Host Alerts
In this section, we will discuss briefly ″code points″. Code points are used within
an NMVT to assist S/390 operators and software to better understand what
information has arrived from a service point. It is imperative that the service
point and S/390 are in agreement with regards to code points and their meaning.
See your S/390 programmer for details on this subject.

We will add some useful information to the alert resulting from app_sendtrap, by
changing the event to add some NetView for AIX code point definitions.

These code point definitions cover the following types of information.

 Notes.

T1U is a subfield and not a subvector. See Systems Network Architecture
Formats, GA27-3136 for additional information.

The code point definitions have to be added to the AIX error message catalog
before we can use them in NetView for AIX. This catalog is called
/usr/adm/ras/codepoint.cat.

You can use the AIX errmsg command to display the currently configured code
points. Choose a value from the errmsg Set ID column in Table 12 to display
information for a particular group of code points. For example: errmsg -w D

To add new code point definitions to the catalog, we did the following:

• Created a file called:

ITSO_codepoints

• Entered the details as shown in Figure 103 on page 143.

Table 12. NetView for AIX Code Points

Description SubVector errmsg Set
ID

Detail Data x′98′ D

Error Description x′92′ E

Failure Cause x′96′ F

Install Cause x′95′ I

Probable Cause x′93′ P

Recommended Action x′81′ T1U R

User Cause x′94′ U

142 Examples of Using NetView for AIX

* Sample Configuration File
* Use with the AIX errinstall command
* for Adding New codepoint definitions
*
* SET D - Detailed Data S/390 subvector: x′98 ′
* E - Error Description S/390 subvector: x′92 ′
* F - Failure Cause S/390 subvector: x′96 ′
* I - Install Cause S/390 subvector: x′95 ′
* P - Probable Cause S/390 subvector: x′93 ′
* R - Recommended Action S/390 subfield: x′81 ′
* U - User Cause S/390 subvector: x′94 ′
*
*
* Message ID Must Be 4 characters and in hex format
* The Message TEXT must not exceed 40 characters
*
* Start the additional user defined codepoints from E601 - E999
*
SET D
E601 ″ITSO D APPLICATION FAILURE″
E610 ″ITSO D APPLICATION RESTORED″
SET E
E601 ″ITSO E SNA DOWN″
E610 ″ITSO E SNA NOW AVAILABLE″
SET F
E601 ″ITSO F SOFTWARE DOWN″
E610 ″ITSO F SOFTWARE HAS RESTARTED″
SET I
E601 ″ITSO I MEMORY USED″
E610 ″ITSO I MEMORY FREE″
SET P
E601 ″ITSO P MEMORY2″
E610 ″ITSO P MEMORY″
SET R
E601 ″ITSO R RESTART APPLICATION″
E610 ″ITSO R MONITOR APPLICATION″
SET U
E601 ″ITSO U APPLICATION DOWN″
E610 ″ITSO U APPLICATION UP″

Figure 103. ITSO_Codepoints

• Type errinstall -c ITSO_codepoints to check for syntax errors.

• Type the command errinstall -f ITSO_codepoints to add these new code
points.

The ″-f″ option will replace any duplicate entries.

You can now check that these code points are available by typing:
errmsg -w ALL | grep E601
errmsg -w ALL | grep E610

If you find any incorrect descriptions, then you can delete them as follows:

 1. Type errmsg

 2. Type SET P

 3. Type - E601 or - E610

Chapter 4. Event Configuration 143

 4. Type <CNTRL>d

144 Examples of Using NetView for AIX

Note that there is one code point catalog for each language. The process listed
above has updated /usr/adm/ras/codepoint.cat.

Using the command:

ln -s /usr/lib/nls/msg/En_US/codepoint.cat /usr/adm/ras/codepoint.cat

we linked the two files together and ensured that NetView for AIX was looking at
the file we updated.

Now that we have defined the code points, we must associate them with the
specific events. To do, do the following from the main NetView for AIX pull-down
menu:

• Select Options-> Event Configuration-> Trap Customization.

• Select the netView6000 Enterprise Name.

• Select the generic/specific event 6/902 (appl restarted).

• Select Alert Editor...

This will give you a screen as in Figure 104.

Figure 104. Alert Editor Primary Screen

4.13.4 Changing the Description Code Point
• Select the Modify next to the description field.

This then displays the generic alert window.

• Select Search and type E610.

• Select OK.

• Cancel the search window, and select the Permanent radio button.

Chapter 4. Event Configuration 145

This then takes you to the screen as in Figure 105 on page 146.

Figure 105. Generic Alert Window

Select OK.

4.13.5 Changing the Probable Cause Code Point
Do the following from the Alert editor window.

• Select Modify next to the Probable Causes Window.

• Select Search and type E610.

• Select OK followed by Cancel.

• Move the required code point from the Available probable Causes window to
the Selected Probable Causes window, using the arrows (see Figure 106).

Figure 106. Editing Alert Probable Causes

• Select OK.

Repeat this process for all the other code point options.

Note: It is necessary to modify all fields in this panel if you started out with
(none) within the field′s contents. (none) will result in a general/default set of

146 Examples of Using NetView for AIX

code points being used and, repeating: It is necessary to modify all fields in such
a case.

4.13.6 Code Point Qualifiers
It is possible to send variable data in the code point, using the variables
available to you during event customization (refer to page 94).

To add a code point qualifier, select Modify from near the Qualifiers Window.

• Select Add.

• Choose 0036 Location from the available list. See Figure 107.

Figure 107. The Available Qualifiers List

• Enter $4 in the Data field.

Chapter 4. Event Configuration 147

• Select OK. which returns you to the Qualifiers window as in Figure 108 on
page 148.

• Select OK.

Finally, this leaves us with the window as in Figure 109, so select OK to apply
these changes.

Figure 108. The Qualifiers Window

The completed alert editor window is shown in Figure 109.

Figure 109. The Completed Event Window

148 Examples of Using NetView for AIX

Select OK or Apply and Cancel on the Event Configuration window.

4.13.7 Checking in S/390 NetView
This document does not intend to summarize all aspects of S/390 NetView and
its handling of the configured RISC System/6000 service point generated NMVT
(alert). Ensure you are in contact with a person who is familiar with S/390
NetView for details and to ensure you are in sync (the same values).

Some matters which will need discussions between the service point person and
the S/390 NetView person include:

• Code points. They must be in sync at both ends of the connection.

• S/390 NetView filters. Although the service point NMVT may be flowing from
the RISC System/6000 to the S/390, it may be filtered at the S/390 NetView
end of the connection.

For example, to see the status of some S/390 filters, from a S/390 NetView
panel issue:

npda df oper

or

npda df arec

• Service point application name. It is necessary for S/390 NetView to have
access to the configured spappld application name.

• Service point LU name. This may seem obvious to both the S/390 NetView
and the RISC System/6000 service point coordinators, but ensuring both
parties are in agreement in this regard is worthy of discussion.

With the additional flexibility of LU 6.2 connections and the emergence of
applications that make use of service point connections, the above matters must
be discussed by persons responsible for installation and configuration of S/390
and RISC System/6000 when the NetView for AIX family of products is involved in
network and systems management activities.

4.13.8 Default Trap to Alert Conversions
There are some events which are converted into alerts by default. These are
inactive when NetView for AIX is initially installed.

The following example shows how to do the following:

 1. View the list events in the default trap to alert filter.

 2. Activate the trap to alert filters.

 3. View the default code point definition for the Node Down event.

From the main NetView for AIX menus:

• Select Options> Event Configuration.

• Select Start Filter Editor.

• Select Trap to Alert Filter control.

• Select the Trap_to_Alert_Filter from the list.

• Select Events Equal to Selected.

Chapter 4. Event Configuration 149

• Select Add/Modify.

• Select enterprise netView6000 from the event ID list.

We can now browse the list of predefined generic/specific event pairs from the
Generic Specific list. To display more information about any of these traps, use
the

event -l

command.

See Figure 110 for the list browsing screen.

Figure 110. Filter Editor Including Browse of Generic/Specific

Select the activate button to start this filter.

Figure 111 on page 151 shows the default code point definitions for the Node
Down event.

150 Examples of Using NetView for AIX

Figure 111. Code Points for NODE DOWN Event

To simulate a node down problem, type event -E 58916865, and you will see
something similar to the panels displayed in Figure 112 and Figure 113 on
page 152. As we are using default S/390 NetView code point entries, we have
not had to make any changes to the S/390 NetView code point tables.

] ^
 N E T V I E W SESSION DOMAIN: RABAN WTWKSH8 04/04/94 14:57:15
 NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 1
RABAN RA6003CP RS60003T RS60003 RS60003

+--------+ +--------+ +--------+ +--------+
DOMAIN | SP |---| TP |---| DEV |---| DEV |

+--------+ +--------+ +--------+ +--------+

 USER CAUSED - NONE

 INSTALL CAUSED - NONE

 FAILURE CAUSED - COMMUNICATIONS/REMOTE NODE
ACTIONS - I000 - PERFORM PROBLEM DETERMINATION PROCEDURES

 ENTER ST (MOST RECENT STATISTICS), DM (DETAIL MENU), OR D (EVENT DETAIL)

 ???
CMD==>_ `

Figure 112. S/390 NetView Node Down Recommended Action

Chapter 4. Event Configuration 151

] ^
 N E T V I E W SESSION DOMAIN: RABAN WTWKSH8 04/04/94 14:58:26
 NPDA-43S * EVENT DETAIL * PAGE 1 OF 2

RABAN RA6003CP RS60003T RS60003 RS60003
+--------+ +--------+ +--------+ +--------+

DOMAIN | SP |---| TP |---| DEV |---| DEV |
+--------+ +--------+ +--------+ +--------+

 SEL# TYPE AND NAME OF OTHER RESOURCES ASSOCIATED WITH THIS EVENT:
 (1) DEV RS60002.ITSO.RAL.IBM.COM

 DATE/TIME: RECORDED - 04/04 14:52 CREATED - 04/04/94 14:51:39

 EVENT TYPE: PERMANENT

 DESCRIPTION: UNABLE TO COMMUNICATE WITH REMOTE NODE

 PROBABLE CAUSES:
COMMUNICATIONS/REMOTE NODE

 ENTER A (ACTION), SEL# (CORRELATED EVENTS), OR DM (DETAIL MENU)

 ???
CMD==>_ `

Figure 113. S/390 NetView Node Down Alert Detail

4.14 S/390 NetView Code Point Customization
In order to have desired information on the S/390 NetView host, we have to
make complementary changes to the S/390 NetView hardware monitor. To make
the required changes, do the following from a S/390 NetView panel:

• Locate the BNJxxUTB member in the BNJPNL1 file.

This can be done from S/390 NetView NCCF. The command and its result,
are shown in T1U of Figure 114. The code point source in our sample is
located in NETVIEW.NV24.BNJPNL1.

] ^
 NCCF N E T V I E W RABAN WTWKSH8 04/04/94 11:30:24 A

T1U
 * RABAN LISTALC BNJPNL1
′ RABAN
 CNM299I
 DDNAME DATA SET NAME DISP
 -------- -- --------
 BNJPNL1 NETVIEW.V2R4M0.BNJPNL1 SHR,KEEP

T2U
 * RABAN CPTBL MEMBER=BNJ92TBL,TEST
 - RABAN CNM736I TEST OF CODE POINT MEMBER BNJ92TBL WAS SUCCESSFUL

T3U
 * RABAN CPTBL MEMBER=BNJ92TBL
 - RABAN DSI633I CPTBL COMMAND SUCCESSFULLY COMPLETED
 - RABAN BNJ192I CODE POINT TEXT MAY HAVE BEEN CHANGED - CONSIDER RESTARTING

YOUR NPDA SESSION IF YOU HAVE NOT DONE SO

 ???

_ `
Figure 114. From S/390 NetView: Locating the S/390 NetView Code Point Tables

152 Examples of Using NetView for AIX

The structure of the member name format is BNJxxUTB where ″xx″ is the
number of the subvector. Figure 115 on page 153, shows an update T1U to
BNJ92UTB via S/390 TSO.

] ^
 EDIT ---- NETVIEW.NV24.BNJPNL1(BNJ92UTB) - 01.04 ------- COLUMNS 001 072
 COMMAND ===> SCROLL ===> CSR
 ****** **************************** TOP OF DATA ************************
 **
 * *
 * TABLE NAME: BNJ92UTB *
 * *
 * DESCRIPTION: THIS MEMBER IS USED TO GENERATE ALERT DESCRIPTION *
 * CODE POINTS WHICH SUPPLEMENT THOSE SHIPPED BY IBM. *
 * IT IS %INCLUDED BY BNJ92TBL. REFER TO THE *
 * NETVIEW CUSTOMIZATION GUIDE FOR THE FORMAT OF ENTRIES *
 * AND MORE INFORMATION. *
 * (C) COPYRIGHT IBM CORP. 1988, 1994 *
 * *
 **
 *
 *E000 N TEXT FOR E000 GOES HERE - MAX = 40 CHARS;
 *E000 N ABOVE > 25 CHARS - ABBREV;
 *E001 N TEXT SHORT - NO ABBREV;
T1U
 E610 N ITSO E SNA NOW AVAILABLE;
 **** ABBREVIATED ENTRY (SECOND ONE FOR THE SAME CODE POINT) IS REQUIRED
 **** IF TEXT > 25 CHARS. OTHERWISE DO NOT ADD ABBREVIATED ENTRY.
 **************************** BOTTOM OF DATA ****************************_ `

Note that this file is included by BNJxxTBL; that is why the command in the previous
panel could point to BNJxxTBL.

• Using S/390 TSO, make and then save the changes to the BNJ92UTB.

• Using S/390 NetView, use the commands shown at T2U and T3U in Figure 114
on page 152, to test and then implement the changes.

Repeat the same operation for the code point tables for 81, 92, 93, 94, 95, and 96
that are mentioned in Table 12 on page 142.

When these changes are made, you will need to exit and then re-enter the
hardware monitor display, and you will then see the changes to the alert
displays, reflecting the user code points. The following figures show the results
for the previously-used app_sendtrap example.

Chapter 4. Event Configuration 153

] ^
 N E T V I E W SESSION DOMAIN: RAPAN WTWKSH6 11/17/94 18:47:18
 NPDA-30A * ALERTS-DYNAMIC *

DOMAIN RESNAME TYPE TIME ALERT DESCRIPTION: PROBABLE CAUSE
RAPAN RA6003CP*DEV 18:47 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:47 ITSC E SNA NOW AVAILABLE: ITSC P MEMORY
RAPAN RA6003CP*DEV 18:47 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:47 ITSC E SNA DOWN: ITSC P MEMORY2
RAPAN RA6003CP*DEV 18:40 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:40 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:40 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:40 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:32 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:32 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:32 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:32 SNMP RESOURCE PROBLEM: UNDETERMINED
RAPAN RA6003CP*DEV 18:32 NO COMM WITH REMOTE NODE: COMM/REMOTE NODE
RAPAN RA6003CP*DEV 18:32 NO COMM WITH REMOTE NODE: COMMUNICATIONS INTF
RAPAN RA6003CP*DEV 18:30 PROBLEM RESOLVED: UNDETERMINED

 DEPRESS ENTER KEY TO VIEW ALERTS-STATIC

 ???
CMD==>_ `

Figure 116. Alerts Dynamic Shows User-Alerts Arr ived (ITSC)

] ^
 N E T V I E W SESSION DOMAIN: RAPAN WTWKSH6 11/17/94 18:47:43
 NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 1
RAPAN RA6003CP RS60003T RS60003 RS60003

+--------+ +--------+ +--------+ +--------+
DOMAIN | SP |---| TP |---| DEV |---| DEV |

+--------+ +--------+ +--------+ +--------+

 USER CAUSED - ITSC U APPLICATION DOWN
ACTIONS - ITSC R RESTART APPLICATION

 INSTALL CAUSED - ITSC I MEMORY USED
ACTIONS - ITSC R RESTART APPLICATION

 FAILURE CAUSED - ITSC F SOFTWARE DOWN
ACTIONS - ITSC R RESTART APPLICATION

 ENTER ST (MOST RECENT STATISTICS), DM (DETAIL MENU), OR D (EVENT DETAIL)

 ???
CMD==>_ `

Figure 117. Example of Recommended Action with User Code Points

154 Examples of Using NetView for AIX

] ^
 N E T V I E W SESSION DOMAIN: RAPAN WTWKSH6 11/17/94 18:47:58
 NPDA-43S * EVENT DETAIL * PAGE 1 OF 2

RAPAN RA6003CP RS60003T RS60003 RS60003
+--------+ +--------+ +--------+ +--------+

DOMAIN | SP |---| TP |---| DEV |---| DEV |
+--------+ +--------+ +--------+ +--------+

 SEL# TYPE AND NAME OF OTHER RESOURCES ASSOCIATED WITH THIS EVENT:
 (1) DEV RS60003.ITSO.RAL.IBM.COM

 DATE/TIME: RECORDED - 11/17 18:47 CREATED - 11/17/94 18:45:49

 EVENT TYPE: PERFORMANCE

 DESCRIPTION: ITSC E SNA DOWN

 PROBABLE CAUSES:
ITSC P MEMORY2

 ENTER A (ACTION), SEL# (CORRELATED EVENTS), OR DM (DETAIL MENU)

 ???
CMD==>_ `

Figure 118. Example of SNA Down Event Detail with User Code Points - Page 1

] ^
 N E T V I E W SESSION DOMAIN: RAPAN WTWKSH6 11/17/94 18:48:06
 NPDA-43S * EVENT DETAIL * PAGE 2 OF 2

RAPAN RA6003CP RS60003T RS60003 RS60003
+--------+ +--------+ +--------+ +--------+

DOMAIN | SP |---| TP |---| DEV |---| DEV |
+--------+ +--------+ +--------+ +--------+

QUALIFIERS:
1) LOCATION ITSC Raleigh

 UNIQUE ALERT IDENTIFIER: PRODUCT ID - 5696-7310 ALERT ID - C86245A8

 ENTER A (ACTION) OR DM (DETAIL MENU)

 ???
CMD==>_ `

Figure 119. Example of SNA Down Event Detail with User Code Points - Page 2

Chapter 4. Event Configuration 155

] ^
 N E T V I E W SESSION DOMAIN: RAPAN WTWKSH6 11/17/94 18:48:23
 NPDA-45A * RECOMMENDED ACTION FOR SELECTED EVENT * PAGE 1 OF 1
RAPAN RA6003CP RS60003T RS60003 RS60003

+--------+ +--------+ +--------+ +--------+
DOMAIN | SP |---| TP |---| DEV |---| DEV |

+--------+ +--------+ +--------+ +--------+

 USER CAUSED - ITSC U APPLICATION UP
ACTIONS - ITSC R MONITOR APPLICATION

 INSTALL CAUSED - ITSC I MEMORY FREE
ACTIONS - ITSC R MONITOR APPLICATION

 FAILURE CAUSED - ITSC F SOFTWARE HAS RESTARTED
ACTIONS - ITSC R MONITOR APPLICATION

 ENTER ST (MOST RECENT STATISTICS), DM (DETAIL MENU), OR D (EVENT DETAIL)

 ???
CMD==>_ `

Figure 120. Example of SNA Up Event Detail with User Code Points - Page 1

] ^
 N E T V I E W SESSION DOMAIN: RAPAN WTWKSH6 11/17/94 18:48:29
 NPDA-43S * EVENT DETAIL * PAGE 1 OF 2

RAPAN RA6003CP RS60003T RS60003 RS60003
+--------+ +--------+ +--------+ +--------+

DOMAIN | SP |---| TP |---| DEV |---| DEV |
+--------+ +--------+ +--------+ +--------+

 SEL# TYPE AND NAME OF OTHER RESOURCES ASSOCIATED WITH THIS EVENT:
 (1) DEV RS60003.ITSO.RAL.IBM.COM

 DATE/TIME: RECORDED - 11/17 18:47 CREATED - 11/17/94 18:45:58

 EVENT TYPE: PERMANENT

 DESCRIPTION: ITSC E SNA NOW AVAILABLE

 PROBABLE CAUSES:
ITSC P MEMORY

 ENTER A (ACTION), SEL# (CORRELATED EVENTS), OR DM (DETAIL MENU)

 ???
CMD==>_ `

Figure 121. Example of SNA Up Event Detail with User Code Points - Page 1

156 Examples of Using NetView for AIX

] ^
 N E T V I E W SESSION DOMAIN: RAPAN WTWKSH6 11/17/94 18:48:35
 NPDA-43S * EVENT DETAIL * PAGE 2 OF 2

RAPAN RA6003CP RS60003T RS60003 RS60003
+--------+ +--------+ +--------+ +--------+

DOMAIN | SP |---| TP |---| DEV |---| DEV |
+--------+ +--------+ +--------+ +--------+

QUALIFIERS:
1) LOCATION ITSC Raleigh

 UNIQUE ALERT IDENTIFIER: PRODUCT ID - 5696-7310 ALERT ID - 8597C1CC

 ENTER A (ACTION) OR DM (DETAIL MENU)

 ???
CMD==>_ `

Figure 122. Example of SNA Up Event Detail with User Code Points - Page 2

4.14.1 Sending Commands from S/390 NetView to NetView for AIX
The following discussion assumes the version of S/390 NetView installed
supports the NETVASIS command in the operator command line. This command
indicates to S/390 NetView that the operator or shell - entered commands should
be left as is from a case-sensitive perspective.

Commands can be sent from S/390 NetView to NetView for AIX with the
RUNCMD. Figure 123 on page 158 illustrates how this can be done. You need to
consider the following:

 1. The case-sensitive requirements of the command that you send to NetView
for AIX.

 2. The name of the catcher application that wil l execute the command.

 3. The name of the ACF/VTAM PU or CP that hosts the catcher.

TAU is the VTAM CP name in our example, and TBU is the name of the service
point application catcher.

In command example T1U, the command failed, as S/390 NetView folded it to
uppercase before it was sent to NetView for AIX.

T2U sent the command to NetView for AIX with ASIS in front of the ovstatus
command. This still failed as S/390 NetView folded the command again.TCU

T3U was as per T1U but was prefixed with the NETVASIS command. This still
fails, as the service point application has folded the command to lowercase.

Chapter 4. Event Configuration 157

Finally T4U works because we have said to S/390 NetView and NetView for AIX,
″send the command as I have typed it″. The command that was entered is
shown at TDU.

] ^
 NCCF N E T V I E W RABAN WTWKSH8 04/04/94 11:24:11 A
T1U TAU TBU
 * RABAN RUNCMD SP=RA6003CP,APPL=RS60003S,/USR/OV/BIN/OVSTATUS NETMON
 - Executing RUNCMD ″ / USR/OV/BIN/OVSTATUS NETMON″ *
 - bsh: /usr/ov/bin/ovstatus: not found*
T2U TCU
 * RABAN RUNCMD SP=RA6003CP,APPL=RS60003S,ASIS/USR/OV/BIN/OVSTATUS NETMON
 - Executing RUNCMD ″ASIS/USR/OV/BIN/OVSTATUS NETMON″ *
 - bsh: asis/usr/ov/bin/ovstatus: not found*
T3U
 * RABAN runcmd sp=ra6003cp,appl=rs60003s,/usr/OV/bin/ovstatus netmon
 - Executing RUNCMD ″ / usr/OV/bin/ovstatus netmon″ *
 - bsh: /usr/ov/bin/ovstatus: not found*
T4U
 * RABAN runcmd sp=ra6003cp,appl=rs60003s,asis/usr/OV/bin/ovstatus netmon
 - Executing RUNCMD ″asis/usr/OV/bin/ovstatus netmon″ *
 - object manager name: netmon*
 - behavior: OVs_WELL_BEHAVED*
 - state: RUNNING*
 - PID: 21890*
 - last message: Initialization complete.*
 - exit status: -*
 - *
 --
 ???
TDU
netvasis runcmd sp=ra6003cp,appl=rs60003s,asis/usr/OV/bin/ovstatus netmon

_ `
Figure 123. RUNCMDs to NetView for AIX Service Point

4.15 AIX Error Log Interaction with NetView for AIX
The AIX error log is used by applications and the operating system to record
status and problem information. This log is called /usr/adm/ras/errorlog, and it
is controlled by the errdemon daemon.

It is useful to generate events using the information in the AIX error log.

We can use the trapgend daemon to make this information available to NetView
for AIX.

4.16 trapgend Daemon
Trapgend is a SMUX subagent provided by NetView for AIX. It can be installed
on local and remote machines via the NetView for AIX GUI.

Trapgend will convert AIX-alertable errors, into SNMP traps.

158 Examples of Using NetView for AIX

 Note!

Do not confuse an AIX-alertable message with a NetView for AIX
event-to-alert conversion. The NetView for AIX events originate as a result of
traps; the AIX-alertable message originates as an entry in the AIX V3 errlog.
A specific error log entry will be alertable if the template that defines it has
Alert=True def ined. Any application may write into the AIX V3 errlog.

The link between trapgend and errdemon, is made with the trap-notify command.
This command is invoked for any AIX error that is logged.

┌─────────────────┐ Error message sent by ┌────────────┐
│ AIX Components │ errlog() subroutine │ │
│ or user programs├────────────────────────────────. │
└─────────────────┘ │ │

│ /dev/error │
/etc/objrepos/errnotify │ special │

┌────────────┐ │ file │
┌─────────────────┐ │ │ │ │
│ ODM rules to ├───────. errdemon Z───────────┤ │
│ drive │ └┬──┬────────┘ └────────────┘
│ │ │ │ � ┌────────────────────┐
│ and/or for ex : │ │ │ └───────┤ errlog templates │
│ │ │ │ └────────────────────┘
│ NV/6000 Trapgend│ │ │
│ and/or usershell│ │ │ ┌───────────┐smux┌──────────┐ SNMP
│ │ │ ├─. trapgend ├───.│ snmpd ├──┐ trap
└─────────────────┘ │ │ └───────────┘API └──────────┘ │

│ │ (
┌─────────────────┐ │ │ ┌───────────┐ . . .
│ Z────────┘ └─. User pgm ├───. Any . IP .
│ errlog │ └───────────┘ action . N/W .
└─────────────────┘ . . .

│
│
(

┌────────────┐
│ NV/6000 │
└────────────┘

Figure 124. AIX Error Descriptions Passed to NetView for AIX. Whenever there is a
message written to the AIX error log, if the template that defines it is flagged as alertable
then the AIX message is forwarded to trapgend by the trap-notify process. Trapgend then
converts the error into an SNMP trap which is broadcast on the network by snmpd.

4.16.1 AIX Error Log Examples
The following examples show how an application error message sent to the AIX
error log is converted into a NetView for AIX event. The example will simulate
an error being raised by an application running a batch job, where an error is
raised during execution, but the job continues. Because the AIX error log can
also be used to record actions, not just errors, it could be used as an audit trail
facility.

Before we discuss them in detail, here are some useful commands for handling
this environment.

Chapter 4. Event Configuration 159

Table 13. Useful AIX Error Log Commands

Command Function

errpt Displays a summary of error log messages

errpt -a Displays detailed list of messages

errpt -t Displays all defined error message templates

errclear 0 Clears all entries in the error log

errpt - tF aler t=1 Displays all alertable errors

4.16.2 Example of Using the AIX errlog to Generate Events
All messages written to the AIX error log have to go via the errlog() C function.
In the following sections, we show an example of a program that allows this
service to be called from the command line.

A template has to be created to hold the information for each error that is
required to be entered in the AIX error log. The purpose of the template is to
serve as criteria to access the data in the error log.

4.16.3 Converting Existing AIX Errors into Events
There are a number of predefined errors already configured as alertable.
NetView for AIX also has a number of predefined events that trapgend will
generate.

To list the errors set as alertable, type errpt -tF alert=1. All these errors will
be converted into events via trapgend. We will follow the procedure for linking
the AIX error to the event display window.

In this example when the errdemon is turned off, an entry is made in the errlog.
If the error logging is being used to generate events then we need to monitor its
activity. The first stage is to make this error alertable. To do this:

• To find the ID for the error, type errpt -t | grep ″Error logging turned off″ .
This will show:

192AC071 ERRLOG_OFF TEMP 0 Error logging turned off″

• To make this error alertable, type: echo ″= 192AC071:\n Alert=true″ |
errupdate″

To list the errors set as alertable type errpt -tF alert=1 and see if the error
is set as alertable.

To see the event defined for this error, from the NetView for AIX pull-down
menus :

− Select Options-> Event Configuration-> Trap Customization.

− Select Enterprise Name netView6000subagent.

− After toggling the Hex Display button, search for the specific number:
192ac071.

− Enter the rest of the information shown in Figure 125 on page 161.

To stop the error daemon enter /usr/lib/errstop.

To restart the error daemon enter: /usr/lib/errdemon. This will generate the
event shown in Figure 126 on page 161.

160 Examples of Using NetView for AIX

Figure 125. Configuration for trapgend Event

Figure 126. Daemon Down Event for err logger

Chapter 4. Event Configuration 161

4.16.4 Example of Creating New Error Definitions
Earlier, in 4.13.3, “Customizing NetView for AIX Aimed at S/390 Host Alerts” on
page 142, an example was shown of creating a relationship which enabled
useful code points by NetView for AIX and S/390 NetView. The following
approach is similar and presented here as a convenience to readers who may
have moved directly to this chapter.

The following example shows how to create a new error and define the relevant
event information.

The procedure we followed was as follows:

• Create a file called errinstall.sample.

 errinstall.sample

*
* SAMPLE CONFIGURATION FILE: errinstall.sample
*
* SET D to add Detailed Data message
* E to add Error Description message
* F to add Failure Cause message
* I to add Install Cause message
* P to add Probable Cause message
* R to add Recommended Action message
* U to add User Cause message
*
* The message id is 4 characters and treated as hex digits
* The message text should not exceed 40 characters
* You can have multiple different messages within each SET
*

SET D
E620 ″ITSO Application Error″

SET E
E620 ″ITSO Batch Update Failed″

SET F
E620 ″ITSO Software Failure″

SET I
E620 ″ITSO Install Cause″

SET P
E620 ″ITSO Batch Application error″

SET R
E620 ″ITSO Check Batch Log file″

SET U
E620 ″ITSO User Cause″

• To place these code points into the AIX error message catalog, issue the
command:

errinstall -f errinstall.sample

• To verify the above, type errmsg -w ALL | grep E620. This will type out the
entries.

162 Examples of Using NetView for AIX

• Create a file called errupdate.sample:

 errupdate.sample

+ ITS_BATCH:
Class= S
Log= True
Report= True
Alert= false
Err_Type= TEMP
Err_Desc= E620
Prob_Causes= E620
User_Causes= E620
User_Actions= E620
Inst_Causes= E620
Inst_Actions= E620
Fail_Causes= E620
Fail_Actions= E620
Detail_Data= 70, E620, ALPHA
Detail_Data= 70, E620, DEC
Detail_Data= 70, E620, HEX

• Now run the command errupdate errupdate.sample. You will get a message
that says 1 entry has been added.

AIX has generated a 32-bit ID during this process. We need to find out what
it is to be able to use the template. The file has been placed in the /
directory with an appended name of undo.

• Type cat errupdate.sample.undo to find the error ID.

 errupdate.sample.undo

- 1f52ba4f:

To check that the template entry was created, use the

errpt -t | grep 1F52BA4F

command. Note that the search argument for the GREP uses uppercase
letters.

errpt -t | grep 1F52BA4F

1F52BA4F ITSO_BATCH TEMP S ITSO Batch update failed

We now need to make this message alertable, so that it can be sent to
trapgend via the trap-notify process.

• Type echo ″= 1F52BA4F:/n″ alert=″true″ | errupdate

This makes the message alertable.

• To verify that it has succeeded, type: errpt -tF alert=1 | grep 1F52BA4F

We now need to generate the error, and log it to the AIX error log. To do
this we use the sample program in Figure 127 on page 164. Compile the
program and then type:

add_error 1F52BA4F ″Test error″

• To verify that this has been sent to the error log, type:

errpt | grep 1F52BA4F

Chapter 4. Event Configuration 163

You should also see an event with no known format in the NetView for AIX
event display.

/***/
/** AUTHOR : Karl Yao, IBM Hong Kong **/
/** Paul Fearn, IBM UK **/
/** PROGRAM : add_errlog **/
/** DESCRIPTION: This C program logs an 8 characters hex number, and **/
/** a 14 characters description to AIX error log **/
/** USAGE : add_errlog error-id resource-name-description **/
/** NOTE : To compile, use cc -O add_errlog.c -o add_errlog -lrts**/
/***/

#include <sys/errids.h>

unsigned ctohex(c)
char c;

{
if (c <= ′ 9 ′) c = c - ′ 0 ′ ;
else if (c <= ′ F′) c = (c - ′ A′) + 10;
else c = (c - ′ a′) + 10;
return(c);
}

main(argc, argv)
int argc;
char *argv[];

{
ERR_REC(80) errbuf;
char *hex, *name;
unsigned sum=0;
int i, shift=0, rc;

if (argc == 1) {
printf(″Usage: errlog <8-digit hex number> <optional resource name>\n″) ;
return;
}

hex = argv[1];
i = strlen(hex) - 1;
do {

sum = (ctohex(hex[i]) << shift) + sum;
shift = shift + 4;
i = i - 1;
}

while (i >= 0);

errbuf.error_id = sum;
name = argv[2];
if (strlen(name) == 0) name = ″ERRLOG TEST″ ;

strcpy(errbuf.resource_name, name);

rc = errlog(&errbuf, sizeof(errbuf));
if (rc != 0)

printf(″Errlog failed, rc=%d\n″ , rc);
else

printf(″Errlog successful, rc=%d\n″ , rc);
}

Figure 127. add_errlog Sample Program to Write to the AIX Error Log

4.16.5 NetView for AIX Event Configuration
We now have to customize the event that is sent to NetView for AIX to provide
some meaningful information. But to do this, we have to be able to identify the
enterprise-specific event.

We have to convert the hex number into its decimal equivalent. Type the
following on an AIX command line:

164 Examples of Using NetView for AIX

bc
obase=10
ibase=16
1F52BA4F
525515343
quit

The value 525515343 will be used to define the specific event for the error.

If the result is greater than x′80000000′ then the number must be a negative. To
calculate this value the event ID will be the negative decimal of x′100000000′
minus the hex error ID.

For example, if the hex error ID is F2D2CB90 this value is greater than
x′80000000′. To calculate the event ID, on the command line type the following:

bc
obase = 10
ibase = 16
100000000-F2D2CB90
221066352
quit

The correct value for the specific event number will be the negative of the final
value, (for example, -221066352).

The event can now be added and customized in NetView for AIX.

To do this we do the following from the NetView for AIX pull-downs.

• Select Options-> Event Configuration-> Trap Customization.

• Select the netView6000subagent enterprise name.

• Select Add New Trap.

• Select enterpriseSpecific.

• Enter 525515343.

• Set Event Category to ″Status Events″.

• Set Severity to ″Minor″.

• Enter the following line into the ″Event Log Format″ field

ERROR:\nDetailed Data: $%28\n$%14\n (errpt -al ″Log Number″)\n

• Select Replace.

• Select Apply.

Once the event has been configured, it can be referenced by clicking on Hex
Display. The specific event can be found using the Error ID number (1F52BA4F).

To send the event, type the following:

add_errlog 1F52BA4F ″Batch Module″

The event will appear similar to Figure 128 on page 166.

Once the event has been configured, the event can be referenced by clicking on
Hex Display. The specific event can be found using the Error ID number
(1F52BA4F).

Chapter 4. Event Configuration 165

Figure 128. Configuration for trapgend Event

To view the error log entry for more details, record the LOG RECORD NUMBER
from the event display window. In the example used, LOG NUMBER is 543972,
type:

errpt -al 543972

This will display all details from the AIX errlog for the generated error as shown
in the following figure.

166 Examples of Using NetView for AIX

ERROR LABEL: ITSO_BATCH
ERROR ID: 1F52BA4F

Date/Time: Tue Apr 5 10:28:13
Sequence Number: 543973
Machine Id: 000105681000
Node Id: rs60002
Class: S
Type: TEMP
Resource Name: Batch Module

Error Description
ITSO Batch Update Failed

Probable Causes
ITSO Batch Application Error

User Causes
ITSO User Cause

Recommended Actions
ITSO Check Batch Log File

Install Causes
ITSO Install Cause

Recommended Actions
ITSO Check Batch Log File

Failure Causes
ITSO Software Failure

Recommended Actions
ITSO Check Batch Log File

Detail Data
ITSO Application Error

Figure 129. AIX Error Log Display

Chapter 4. Event Configuration 167

168 Examples of Using NetView for AIX

Chapter 5. NetView for AIX Open Topology

NetView for AIX provides APIs to allow you to integrate programs that manage
resources from different protocols.

Some examples of this might be:

 1. To allow the user to select a new action from a selected object

 2. An application to manage a new network protocol

 3. To allow an application to react to network events

In this way, NetView for AIX may be used as a platform to extend support beyond
the base capability to manage IP nodes and SNMP devices.

One key API is the OVw API, which gives a program the ability to directly modify
submaps and the object information underlying them. However, if you want to
manage and integrate networks that use other protocols, NetView for AIX
provides you with an alternative approach: Open Topology.

Open Topology has several advantages over using the OVw API directly:

 1. Simplification

All of the work to create the submaps and linkages between them is handled
by NetView for AIX, so user code can be much less complex.

 2. Integration and correlation

A standard part of the open topology function is the ability to identify
situations where one object appears as a symbol in more than one network
protocol, and provide linkage between them.

 3. Protocol switching

You can select the list of protocols associated with the object, and then
switch to the submap representing the required protocol. This allows you to
display the object in the context of the protocol that you are investigating.

For example, switch between the IP and SNA views of a PS/2.

 4. Integration with the control desk event cards

When there is an event card displayed, then the source of this event can be
highlighted. This function is standard, if the application uses NetView for AIX
Open Topology.

 5. Propagation of status between protocols

NetView for AIX open topology allows for a status change in a protocol
symbol to be automatically propagated to the object that is hosting the
protocol.

 Copyright IBM Corp. 1994 169

5.1 Open Topology Components
Figure 130 on page 171 shows the elements that make up the IP Topology and
Open Topology parts of NetView for AIX. Notice the symmetry between the two
halves of the diagram; for each function that is specifically to do with IP
Topology, there is an equivalent non-IP function. We will examine the roles
played by each of these component pairs:

netmon/Application code The netmon daemon performs discovery for the IP
network, and then polls for status. An application monitoring a non-IP
protocol has to provide the same function. The mechanism used for
monitoring may be specific to the protocol, or it may make use of
NetView for AIX facilities. A good example of the latter would be LAN
Management Utilities/6000, which monitors PS-based client/server
environments using an SNMP proxy agent.

iptopmd/gtmd These two daemons generate and maintain the databases that
contain topology information, iptopmd for IP, gtmd for Open. Each
creates its own database based on an abstract model of how a
network is constructed.

iptopmd uses an internal IP-specific model, and builds its database
from this, based on information provided by netmon. gtmd uses the
IBM Open Topology model to build its database using information
from specially-formatted traps. Both daemons also create and
maintain entries in the object database.

The Open Topology model is defined by a MIB, the source for which
is found in file /usr/OV/snmp_mibs/drafts/nv6k_topo.mib. This MIB
defines network elements, plus the trap formats for defining them, in
a generic form.

ipmap/xxmap These two background processes are started whenever a user
starts the NetView for AIX GUI. They take information from the object
database and the topology databases (ipmap for IP, xxmap for Open)
and convert it into submap and symbol definitions. They remain
active, being responsible for maintaining symbol status. xxmap
additionally provides the symbol correlation and protocol switching
function described above.

The only element of the Open Topology support that we have not mentioned is
noniptopod. This daemon registers with netmon to receive traps when a new
node is discovered. Using the IP node address and OID from the trap, it sends
SNMP get requests for each OID in the oid_to_command file, to the node named in
the trap. If it receives a valid responses, it sends the command named in the
oid_to_command file to start the data collection process on the node. We will
discuss this further below (5.4, “Network Discovery with Open Topology” on
page 175).

170 Examples of Using NetView for AIX

Figure 130. Components of IP and Open Topology

As you can see, all that an application has to do to create a set of submaps
depicting its own network topology is to send traps to gtmd. The format of these
traps, and the MIB objects encoded within them, is all defined in the Open
Topology MIB. If you want to understand the elements of the MIB in more detail
you should refer to Appendix A, “Open Topology MIB Reference” on page 241.

Open Topology support has been further enhanced in NetView for AIX by the
addition of an API which may be used in place of the trap interface. We discuss
this further below (5.6, “The Open Topology API” on page 179).

Chapter 5. NetView for AIX Open Topology 171

5.2 Applications Using Open Topology
Currently this technology is used by:

• LAN Network Manager/6000 (LNM/6000)

LNM/6000 communicates with LNM for OS/2 to provide Token Ring
configuration and performance management.

• LAN Management Utilities/6000 (LMU/6000)

LMU/6000 communicates with LMU for OS/2 to provide control and
management of OS/2 LAN Server, Novell Server and their client
workstations.

• SNA Manager/6000

SNA Manager communicates with NetView/390 to provide topology display
and control of an SNA subarea network.

5.3 Terms and Concepts
The Open Topology model is generic, it is designed to be applicable to many
different types of network topology. The terms used are therefore somewhat
abstract, and are mostly borrowed from mathematical graph theory.

One of the key concepts is of a Protocol ID. This is a MIB instance which is
associated with each open topology object when it is created. The default
values for the protocol IDs are defined as instances of the ifType OID. The
mapping between the protocol object IDs and the text that defines them is in file
/usr/OV/conf/oid_to_protocol . When generating a network topology, all the
objects within the topology should have the same protocol ID. So if, for example,
we were creating an application to map a FDDI network, we would define the
objects in the network with a protocol ID of 1.3.6.1.2.1.2.2.1.3.15 where the 15
identifies the instance for ″FDDI″.

To add confusion, when defining the protocol ID for a ″Vertex″ type object (see
below), the protocol ID is not referred to as a MIB instance but as an integer
value. These integers are defined in the open topology MIB
(/usr/OV/snmp_mibs/drafts/ibm-nv6ktopo.mib). Fortunately the values defined are
all identical to the instance ID of the protocol object ID described above. In the
case of FDDI, therefore we would define vertices using a protocol ID of 15.

Below we list the more common types of object defined by the open topology
model. All of this is also contained in NetView for AIX Programmers Guide,
SC31-6238, but is included here for your convenience.

Vertex A vertex is some point in space, A vertex can contain a physical or
logical interface to a network. A logical interface is a protocol such as
IP or SNA. Physical interfaces are hardware adapters such as
token-ring or ethernet.

Arc Arcs represent connectivity between vertices or graphs acting as
vertices. An example would be a connection between two SNA PU
type 4s. This arc connection is independent of either point.

Graph A Graph is a representation of a collection of vertices and the arcs
connecting them. It could represent either a physical network, like a
token-ring or ethernet segment; or it could be a logical network like IP

172 Examples of Using NetView for AIX

or SNA. Graphs can also be used to group resources in a network, in
any way chosen by the user.

A graph can also represent a single computer node. Each of the
computer components are represented by vertices, with the
appropriate connections. This sort of graph is called a box graph.

Member Where graphs, arcs and vertices are contained in another graph, they
are said to be members of that graph. For example, we may have a
graph representing a token/ring segment. The vertices representing
the adapters in the segment, and the arcs representing connections
between a CAU and the adapters, would all be members of the
segment graph.

Underlying Arc An underlying arc is an arc that represents the lower level
connectivity used by another arc. So for example we might have one
logical connection made up of several physical links. In this case the
logical connection would be an arc, and the physical links underlying
arcs. We say that the underlying arc is used by the arc.

Simple Connection A simple connection represents a connection as seen by one
of the end points. It can contain any information that is specific to the
end point node. For example, if we have a switched link one end may
be up (ready for connection) and the other down. A simple ″arc″
representation would just show the link as down, whereas two
connections representing the ends of the link could accurately depict
the status.

Service Access Point A service access point is a mechanism whereby one
network element provides services to other elements. As an example,
a node might have IP, SNA, IPX, DECnet all using one ethernet
adapter for physical transport. A vertex representing the LAN station
would provide a SAP, Vertices in each of the network protocols
would be using the SAP. A vertex can only use one SAP. The SAP
used by the vertex represents the lower level protocol, and each
vertex can only use one lower level protocol. A resource can provide
services to many other resources through one or more SAPs. The
SAP usage is represented as a table.

We will look further at how SAPs affect NetView for AIX′s depiction of
a network in 5.5, “Open Topology Service Access Points” on
page 176.

Figure 131 on page 174 illustrates the relationship between several of these
terms. When looking at this diagram, you should imagine each of the ′ layers ′ as
NetView for AIX submaps. You would get to a lower layer submap by exploding
the higher-layer object that it is a ′member of ′ or ′used by′. This is exactly how
xxmap converts Open Topology database definitions into submap format.

Chapter 5. NetView for AIX Open Topology 173

Figure 131. Some Elements of the Open Topology Model

5.3.1 Specifying Icons when Using Open Topology
Although the open topology model is mostly abstract, we want the resulting
display on the NetView for AIX submap displays to be meaningful. For this
reason we have to supply icon information when adding new objects. Whether
we are driving open topology with traps or using the API, the icon details are
passed as MIB object instances.

File /usr/OV/conf/C/oid_to_sym provides the mapping between object instances
and icons.

174 Examples of Using NetView for AIX

5.4 Network Discovery with Open Topology
NetView for AIX provides an extension to the network discovery process to allow
non-IP topology applications to benefit from the discovery polling performed by
netmon.

Figure 132 shows the discovery process in the context of the open topology
support.

 1. When Netmon discovers a new network node, the discovery event is sent to
the pmd daemon.

 2. noniptopod uses event registration to allow itself to be sent copies of all
these discovery event. Assuming the discovered node supports SNMP,
noniptopod can use the sysObjectID retrieved from the node to extract a
command from the oid_to_command file. This command would normally be a
start command to start a non-IP network monitoring daemon.

 3. The non-IP daemon then solicits topology information and other details from
the newly-discovered node.

 4. The daemon then sends requests to gtmd to add the new node to the Open
Topology database, and hence (via the services of xxmap) to the NetView for
AIX submaps. This interaction can be via SNMP traps or, from NetView for
AIX, using the gtmd API information to the user.

 IP Resources
┌─────────┐
│IP Agents│
└─────────┘

� T1U ┌─────────┐
│ │ xxmap │
(Discovery └─────────┘

┌──────┐ Event ┌───┐ ┌───────┐ � �
│netmon│────────.│pmd│─────.│ovtopmd│ │ │
└──────┘ └─┬─┘ └──┬────┘ ┌───┘ └───┐

│ (│ │
┌──────────┐ │ ┌─────┐ ┌───┴────┐┌─────┴─────┐
│ ovesmd │Z──────┘ │ovwdb│─────.│Object ││non-IP Topo│
└──────────┘ └─────┘ │Database││ Database │
- - - - - - - T2U └────────┘└───────────┘
┌──────────┐ T4U � �
│noniptopod├────┐ │ │
└──────────┘ │ ┌───────────┐ ┌────┐ │ │

└──.│Proprietary├───.│gtmd├──┘ │
┌──.│daemon │ │ ├──────────────┘

┌─────────────┐ │ └───────────┘ └────┘
│Non IP Agents│Z──┘
└─────────────┘

Non IP Resources T3U

Figure 132. The Discovery Process and the Open Topology MIB

Chapter 5. NetView for AIX Open Topology 175

5.5 Open Topology Service Access Points
As we have discussed, the SAP table gives us a technique for declaring that a
given network element provides a service for other network element(s) to use.

In this section we will illustrate how this affects the way that networks appear in
NetView for AIX by means of a simple example. Consider the case where we
have a PS/2 with an token-ring adapter card, that is both :

• Physically attached to a token-ring CAU, and,

• A node in the SNA network

We would like to present this information on NetView for AIX. Two IBM products,
LNM/6000 and SNA Manager/6000, will display these network protocols, but for
simplicity we will ignore the products and just look at the process from an open
topology point of view.

We start by discussing the discovery process during which the objects are added
to databases and maps.

5.5.1 The Discovery Process
During the discovery process, the applications will find the interface that is
appropriate to their environment. In the case of AIX LNM/6000, NetView for AIX
starts the lnm6kd daemon to talk to the LNM SNMP proxy agent. In the case of
SNA Manager/6000 the SNA topology information is provided from the
System/390 host in the form of preprocessed views.

Initially, there is no correlation between any of the symbols on the map, and
behind the symbols, there are 2 separate objects.

After this initial discovery, the NetView for AIX Object database will contain the
following objects, in descending hierarchical order:

 1. SNA (representing ″The SNA Network″)
 2. LAN (representing ″The LAN″)
 3. WS-SNA (the workstation, from a SNA point of view)
 4. WS-LAN (the workstation, from a LAN physical point of view)
 5. PU (the SNA physical unit for the workstation)
 6. MAC Address (the LAN interface card)

The end result of this is shown in Figure 133 on page 177.

176 Examples of Using NetView for AIX

Submap
ROOT

 SNA LAN

Submap Submap
SNA LAN

 WS SNA WS LAN

Object DB

 SNA

 Protocols LAN Protocols
 WS SNA
 SNA WS LAN 802.5
 PU
 MAC ADRESS

Submap Submap
WS SNA WS LAN

 PU MAC ADRESS

Figure 133. SNA and Physical Network Topologies with No Correlation

5.5.2 Open Topology Invocations
The above scenario would require a series of calls to be made to the Open
Topology interface (either as traps or API calls). The result of these calls is that
objects are added to the topology and object databases.

For the ″SNA″ side of the diagram, the following sequence of calls would be
made:

 1. Trap newGraph for SNA with ISroot=True

This causes gtmd to create a SNA object in the object database. xxmap adds
a SNA submap symbol to the root map, associated with the SNA object in
the object database. xxmap also creates a SNA submap in the map
database.

 2. Trap newGraph for WS-SNA with isRoot=False

This creates an object for WS_SNA in the object database. xxmap cannot yet
create a symbol for WS_SNA, since it we have not yet told it which graph the
WS_SNA graph is a member of, and therefore xxmap does not know the
parentage of the symbol. It can, however, create a WS_SNA submap in the
map database, associated with the WS_SNA object.

 3. Trap newMember for WS_SNA

Chapter 5. NetView for AIX Open Topology 177

xxmap can now create a symbol for WS-SNA in the map database, and place
it on the SNA submap.

 4. Trap newVertex for PU

gtmd creates PU in the object database

 5. trap newMember

This is to place a PU in the WS-SNA submap. gtmd creates a PU symbol
associated with the PU object, and then places it into the WS-SNA submap.

5.5.3 Using Open Topology Correlation
Now that we have placed the SNA PU on to the submap, we want to correlate
this PU with the MAC object that has been created by gtmd during the LNM/6000
discovery process. This is not done by LNM/6000 and SNA/6000, as the
information is not available to either environment, about the existence of the
other. By contrast it is done by LNM/6000 and NetView for AIX IP support,
because the MAC address of each IP interface is known, and can thus be
correlated with its LNM/6000 equivalent.

If we know the mapping between the PU and its MAC address, we can provide
correlation using the Open Topology MIB. To do the correlation, we need to
send gtmd a newSAP trap, to indicate that the PU vertex object uses services
provided by the MAC-ADDRESS vertex object. When this is done, the xxmap EUI
application will take the following actions.

 1. The WS_SNA object is linked to the WS_LAN object.
 2. The PU symbol is copied into the WS-LAN submap
 3. The WS-SNA object is deleted
 4. The WS-SNA submap is deleted.

The affect on the NetView for AIX submaps and object data is shown in
Figure 134 on page 179.

178 Examples of Using NetView for AIX

Submap
ROOT

 SNA LAN

Submap Submap
SNA LAN

 WS SNA WS LAN

Object DB

 SNA

 Protocols LAN Protocols

 SNA WS LAN 802.5
 802.5 PU SNA
 MAC ADRESS

Submap
WS LAN

PU MAC ADRESS

Figure 134. LNM/6000 and SNA/6000 with Correlation

The xxmap EUI application allows you to transfer between the SNA and the LAN
submaps. This can be done by listing which protocols are being used by the
workstation and switching to the one that you want.

5.6 The Open Topology API
With NetView for AIX V2.1 we are only able to manipulate (create, delete, set
attributes of) Open Topology objects using SNMP TRAPs. There are two main
problems with this:

 1. It is inefficient, in that several processing steps are needed to encode the
trap, prepare and send it in a UDP frame, receive it, decode it, and finally
take the action requested.

 2. It is inherently unreliable, as it uses UDP. This could give us a problem
when the traps arrive in the wrong order.

NetView for AIX provides an API for Open Topology, which has a TCP socket
connection to gtmd, thus overcoming these problems.

The API also improves the usability of the interface for the programmer. Using
traps, the programmer has to keep track of index numbers associated with each
object created. With the API, there is no need to worry about the index of the
object that you create, as this is managed for you.

Chapter 5. NetView for AIX Open Topology 179

Finally, the API provides list functions, which allows the application to retrieve
information about objects from the gtmd database.

5.6.1 Elements of the Open Topology API
There are three types of function provided by the open topology API:

• General-purpose routines. These start and stop the TCP socket connection
between the calling code and gtmd, and control the attributes of the session.

• Error-processing routines. These report and interpret error codes from the
API calls.

• Convenience routines. By far the largest group, these provide functions to
add, delete, and set variables for any of the open topology objects described
above. There are also a number of ″get″ functions, which provide
information about objects. The names of these routines are all
self-descriptive, for example: ″nvotGetArcsInGraph″ returns a list of the arcs
that are members of a given graph.

The API routines are fully described in NetView for AIX Programmers Guide,
SC31-6238.

5.7 Open Topology Samples
During this project, we developed two sample programs for driving the NetView
for AIX open topology processes. Both programs can be executed from the
command line, or by taking input from a file.

wtgtm This is a shell script which uses the SNMP Trap interface. It sends
traps using the snmptrap command of NetView for AIX. This program
is compatible with NetView for AIX V2 as well as NetView for AIX.

wtotapi1 This is a C program that uses the NetView for AIX open topology API.

Both programs are listed in Appendix C, “Open Topology Program Samples” on
page 255.

The objectives of both programs is to provide a simple command-line technique
to define and control network topology views, using the Open Topology support
of NetView for AIX. Neither program exploits the full capability of the function,
but they do serve to show the sort of thing that may be achieved with little
programming effort. To illustrate the use of the samples, we will use a working
example.

5.7.1 Worked Example Using Open Topology Sample Code
For our example we chose to represent the NFS distributed file system of several
of the RISC System/6000s in the ITSO Raleigh center.

Two machines act as NFS servers, providing disk access to three other RISC
System/6000s.. The elements we want to map on the NetView for AIX display
are therefore:

• The NFS servers

• The directories they export

• The NFS clients that mount the directories

• The file systems over which the directories are mounted

180 Examples of Using NetView for AIX

Ideally, we would issue commands to determine the relationships between these
resources and then issue Open Topology requests to automatically generate the
configuration submaps. However, for the purposes of our example we will
simply define the topology statically.

5.7.1.1 Defining the Protocol ID
The first thing to consider is the protocol ID that we will use. As described
above (5.3, “Terms and Concepts” on page 172) the protocol IDs are defined in
two places:

• As an object ID in file /usr/OV/conf/oid_to_protocol

• As an integer value in the open topology MIB

We edited the oid_to_protocol file, adding the following entry:

″ITSO″=1.3.6.1.4.1.2.8.1
${ITSO}.1=″NFS″

The object ID (1.3.6.1.4.1.2.8.1) that we have assigned to ITSO is an experimental
leg under the IBM enterprise ID in the MIB. In fact the object ID used for the
Open Topology protocol ID is not correlated with other MIB definitions, so it is
not essential for it to be unique. However it is good practice to use ″official″
OIDs where possible. If you are adding your own protocols in this way, you may
wish to apply for an enterprise ID from the Internet Assigned Numbers Authority.
IDs can be obtained via email from iana@isi.edu.

There is presently no way to add a vertex protocol number to Open Topology, so
we will use 1 which has a description of ″Other″.

5.7.1.2 Adding Symbols
We will want to use symbols that are not defined in the default
/usr/OV/conf/C/oid_to_sym file, so before we start building the topology we need
to update it. We added the following lines to oid_to_sym:

1.3.6.1.4.1.2.8.2.1:Software:Process
1.3.6.1.4.1.2.8.2.2::Device:Hard Disk

These lines associate a MIB object ID (in this case under the ITSO experimental
leg) with symbols defined in NetView for AIX′s symbols directory:
/usr/OV/symbols/C. The first name after the MIB OID is the Symbol Class, it is the
name of a file in the symbols directory. The second name is the Symbol Type,
which references an entry in the Symbol Class file. This in turn references a set
of bitmaps.

5.7.1.3 Defining the Topology

Although the sample programs that we developed (wtgtm and wtotapi1 - see 5.7,
“Open Topology Samples” on page 180) can be invoked from the command line,
it is easier to place all the commands in one file to be invoked together. Also, to
save confusion, we will only use the ″wtotapi1″ version in this example.

The command file used to create our NFS sample is as shown below:

Chapter 5. NetView for AIX Open Topology 181

prefix 1.3.6.1.4.1.2.8.1. T1U
prot 1 T2U
add graph NFS Network:Star rowcol T3U
focus NFS T4U
add graph rs60003.nfs Software:Process tree T5U
add graph rs60005.nfs Software:Process tree
focus rs60003.nfs
add box /usr/local ″Device:Hard Disk″ rowcol T6U
add box /wtprint ″Device:Hard Disk″ rowcol
add box rs60004 Computer:Workstation rowcol
add box rs60002 Computer:Workstation rowcol
add box rs60001 Computer:Workstation rowcol
add arc rs60001 /usr/local T7U
add arc rs60002 /usr/local
add arc rs60004 /usr/local
add arc rs60002 /wtprint
focus rs60005.nfs T8U
add box /usr/sys/inst.images ″Device:Hard Disk″ rowcol
add box /u/harald ″Device:Hard Disk″ rowcol
add box rs60004 Computer:Workstation rowcol
add box rs60002 Computer:Workstation rowcol
add arc rs60004 /u/harald
add arc rs60004 /usr/sys/inst.images
add arc rs60002 /usr/sys/inst.images

Figure 135. Command File nfsmap Using wtotapi1 Sample Code

wtotapi1 reads commands from standard input, so we invoke the above
command file by entering: wtotapi1 < nfsmap.

Some notes on the contents of the nfsmap command file:

 1. We want to use our own protocol OID (see 5.7.1.1, “Defining the Protocol ID”
on page 181) instead of the default one. Therefore we tell wtotapi1 the
dotted-decimal root for it.

 2. We wil l use protocol instance 1 (″NFS″).

 3. First we add a symbol to the root map to anchor our new topology. It wil l be
a network symbol and the submap below it will use the Row/Column layout.

 4. Next we want to add objects one layer further down the network hierarchy,
so we define the parent object for them (the ″NFS″ root-graph that we just
defined). In terms of the Open Topology model, the objects that we next add
will be ″members of″ the NFS graph.

 5. We add objects to represent the two NFS servers. Note that these are
graph-graphs, not box-graphs, because we will not add vertices directly
under them.

 6. We have now gone one layer further down, and we add objects representing
the directories exported by the NFS server on rs60003 and the machines that
mount them. Note that these are box-graphs, since we will want to add
vertices below them.

 7. Next we establish the relationships between the exported directories and the
machines using them, by adding connections (in the Open topology model,
arcs) to the submap.

182 Examples of Using NetView for AIX

 8. Finally we repeat steps 6 and 7 for the resources connected to the NFS
server on rs60005.

The result of executing the above sequence of instructions is shown below:

Figure 136. The Root Submap as Updated by this Example

The ″NFS″ symbol has been added by xxmap. There will also be an entry in the
NetView for AIX object database representing this object.

Next we explode the NFS symbol with a double-click of the left mouse button:

Chapter 5. NetView for AIX Open Topology 183

Figure 137. The NFS Server Submap

Our two servers are represented by Software:Process symbols. We explode
rs60003.nfs:

184 Examples of Using NetView for AIX

Figure 138. The Mounted File System Connections

Here we see symbols representing the exported file systems and the NFS client
systems that have mounted them.

5.7.1.4 Adding Status Representation
Thus far we have created a map of our NFS configuration, but all the symbols
are blue (status unknown). We now want to add status representation to our
NFS network views.

In the Open Topology model, status flows from the bottom up. That is, only the
elemental parts of the network (those lowest in the hierarchy) have status
directly - all the higher-layer parts derive their status from the objects that are
contained in them. The most basic network component in the Open Topology
model is the vertex. If we want to add status representation to our network,
therefore, we have to add vertices.

In the NFS network the lowest level component is the file system - the real file
system on the server and the mounted file systems on the clients. It is the
status of these that we will monitor. To add vertices representing them, we pass
the following commands to wtotapi1:

Chapter 5. NetView for AIX Open Topology 185

prefix 1.2.3.4.
prot 1
focus /usr/local
add vertex rs60003:/usr/local ″Device:Hard Disk″
focus /wtprint
add vertex rs60003:/wtprint ″Device:Hard Disk″
focus rs60001
add vertex rs60001:/usr/local ″Device:Hard Disk″
focus rs60002
add vertex rs60002:/usr/local ″Device:Hard Disk″
focus rs60002
add vertex rs60002:/mnt/wtprint ″Device:Hard Disk″
focus rs60004
add vertex rs60004:/usr/local ″Device:Hard Disk″
focus /usr/sys/inst.images
add vertex rs60005:/usr/sys/inst.images ″Device:Hard Disk″
focus /u/harald
add vertex rs60005:/u/harald ″Device:Hard Disk″
focus rs60002
add vertex rs60002:/usr/sys/inst.images ″Device:Hard Disk″
focus rs60004
add vertex rs60004:/usr/sys/inst.images ″Device:Hard Disk″
focus rs60004
add vertex rs60004:/u/harald ″Device:Hard Disk″

Figure 139. Commands to Add Vertices to NFS Submaps

Adding these vertices has the effect of populating the submaps below the box
graphs in the lowest layer submap (such as the submap in Figure 138 on
page 185). For example if we explode the rs60002 symbol, we will see the
screen in Figure 140 on page 187.

186 Examples of Using NetView for AIX

Figure 140. rs60002 Submap, Showing Vertex Symbols

When a vertex is created it gets a default status of ″normal″ (that is, up). This
causes the symbol representing it to be green. This ″green″ status is
propagated up the symbol hierarchy to the graph that contains it.

5.7.1.5 Setting Vertex Status
So far all of our work has been happening on the manager (NetView for AIX).
We have created a picture of the NFS network, but as yet it is just a static set of
views. If our NFS application is to be useful we need to have status information
updated by monitors running on the agent systems.

The agent needs to have two components:

 1. A method to detect the status change

 2. A method to communicate this to the central manager.

For the first component we could have used a simple shell script, to check for
the existence of the file systems we are monitoring on a regular cycle. Instead,
we chose to install Systems Monitor for AIX and configure the Threshold and File
Systems MIB tables to perform this function. This monitoring capability is only
one of the many functions of the Systems Monitor for AIX ″smart agent″. We will
not explore the functions of the product here, but you may wish to read further
about it in AIX Systems Monitor Users Guide, SC31-7042 and the redbook IBM
Systems Monitor Anatomy of a Smart Agent, GG24-4398.

Chapter 5. NetView for AIX Open Topology 187

For the second component (communication of changes) we considered four
possibilities, using standard functions of the Systems Monitor for AIX threshold
table:

 1. Send a trap and use event configuration in NetView for AIX to execute wtgtm
or wtotapi1 when the trap arrives.

 2. Place a copy of wtotapi1 on the agent system and use it to remotely update
gtmd on the manager.

 3. Place a copy of wtgtm on the agent system and use it to remotely update
gtmd on the manager.

 4. Execute the snmptrap command to set the status directly.

All four options have the same effect - a vertex status change request is passed
to gtmd on the NetView for AIX system. The differences lie in whether a TCP
socket (wtotapi1) or SNMP trap (wtgtm, and option 4) is the vehicle. We elected
to go for option 4. The advantage is that because the snmptrap command is part
of Systems Monitor, it will work on systems to which wtgtm or wtotapi1 may not
be portable (for example, Sun Solaris or OS/2).

The Systems Monitor for AIX configuration screen for the Threshold Table is
shown below (Figure 141 on page 189). This entry causes the Systems Monitor
agent (the sysmond daemon) on the target system (in this case rs60002) to poll
every 30 seconds to see if the /usr/local file system is mounted, and to take
action if it is not.

The threshold action is defined by pressing the Threshold Actions button.
Figure 142 on page 190 shows that we have told Systems Monitor for AIX to
issue a command set_down. There is an equivalent action panel for when the
threshold re-arms (which we have specified to be when the NFS mount is in
place again).

188 Examples of Using NetView for AIX

Figure 141. Systems Monitor Threshold Table Definit ion for NFS Monitor ing

Chapter 5. NetView for AIX Open Topology 189

Figure 142. Systems Monitor Threshold Action Definition. This action is tr iggered when
the threshold defined in the previous figure is exceeded.

The set_down and set_up shell scripts each contain a single snmptrap command.
This is set_down:

us=`hostname`
resname=$us:$1
trap_tgt=rs60003
trapcmd=/usr/lpp/sm6000/original/snmptrap

$trapcmd $trap_tgt public .1.3.6.1.4.1.2.6.3.1 $us 6 1879048194 0 \
.1.3.6.1.4.1.2.5.3.1.1.1.2 Integer 1 \
.1.3.6.1.4.1.2.5.3.1.1.1.3 Octetstring $resname \
.1.3.6.1.4.1.2.5.3.1.1.1.9 Objectidentifier 1.3.6.1.4.1.2.8.1.0 \
.1.3.6.1.4.1.2.5.3.1.1.1.10 Integer 1 \
.1.3.6.1.4.1.2.5.3.1.1.1.11 Integer 1 \
.1.3.6.1.4.1.2.5.3.1.1.1.12 Integer 8 \
.1.3.6.1.4.1.2.5.3.1.1.1.13 Integer 2

Figure 143. Shell Script set_down - Send Change Vertex Status Trap

The snmptrap command sends an enterprise specific trap, as defined in the
Open Topology MIB. The specific trap number (1879048194) has the meaning
″change vertex status″. The last four variables in the trap are the Operational
Status, Unknown Status, Availability Status, and Alarm Status. Different
combinations of these map to different NetView for AIX symbol statuses and,
therefore, colors. The possible combinations are listed in A.3.3, “Mapping States
and Status to NetView for AIX Displays” on page 249.

We enabled the Systems Monitor for AIX Threshold Table entry, and unmounted
the /usr/local file system on rs60002. Within 30 seconds the color of the vertex
symbol changed, and the change was propagated up the NFS submaps.

190 Examples of Using NetView for AIX

Figure 144. File Systems Submap with Status Change

5.7.1.6 Correlating with Other Protocols
The views of the NFS network that we have built are self-contained. The only
place that they meet other protocols is on the Root submap. We now want to
use the Open Topology Service Access Point function to provide correlation
between NFS resources and IP network resources.

Although the IP network submaps are not generated by gtmd/xxmap, hooks have
been placed in the Open Topology structure to enable correlation with IP
resources to be made. The hooks take the form of one vertex for each IP
interface whose name is the IP address of the interface and whose protocol
number is 56. Note that it is the IP address that is used, even though the
selection name by which the node is usually known may be an IP name from
/etc/hosts or DNS.

We want our correlation to reflect the relationship between the node and the file
systems in it, that is to say: Node ″x″ contains NFS file system ″y″. The way we
achieve this is by generating SAP table entries, provided by NFS file system
vertices and used by the node address. We used a file containing the following
sequence of commands as input to wtotapi1:

Chapter 5. NetView for AIX Open Topology 191

prefix 1.3.6.1.4.1.2.8.1.
prot 1
add sap providing rs60001:/usr/local
add sap providing rs60002:/usr/local
add sap providing rs60004:/usr/local
prot 56
add sap using 9.24.104.26 rs60001:/usr/local 1
add sap using 9.24.104.28 rs60002:/usr/local 1
add sap using 9.24.104.27 rs60004:/usr/local 1

Figure 145. Adding SAP Entries Correlating NFS and IP. Note the two protocol IDs in
use, 1 is our NFS protocol, 56 is the pre-defined protocol ID for IP.

The most obvious result of this is that the submap below each node in the IP
world and the NFS world are merged. For example. if we explode the rs60002
symbol from the IP Internet submap, we see a window similar to Figure 146 on
page 192.

Figure 146. Merged Lowest-Layer Submap Due to SAP Correlation. Notice that both the
NFS file systems and the IP interfaces can now be seen to be ″part of″ rs60002. Status
changes to any of them may be propagated up both submap trees.

Another feature provided by SAP correlation is the protocol switching function.
Under the Views menu bar there is a Protocols menu option:

192 Examples of Using NetView for AIX

Figure 147. Protocol Switching Option

If we select rs60002 and select the Protocols option we see the following panel
(Figure 148 on page 193) from which we can directly pass to the different worlds
in which rs60002 exists, in this case IP or NFS.

Figure 148. Protocol Switching Panel

Chapter 5. NetView for AIX Open Topology 193

194 Examples of Using NetView for AIX

Chapter 6. Manager Takeover

One of the new features of NetView for AIX V3R1 is the Manager Take-over
function. This feature allows the management of the IP network to be split up
into segments, with multiple copies of NetView for AIX V3R1 each managing its
own defined resources. These separated segments are called Spheres Of
Control (SOC). Devices outside the SOC of a particular manager will be
unmanaged. That is, no polling for status or configuration will be performed.

6.1 Definitions
• We use the term object to refer to a managed device or collection of devices

in an IP network. For example, a RISC System/6000 or 6611 router, would be
objects, as would an IP subnetwork or segment.

• A Container must be an Internet, Network, Location or Segment object. That
is, a collection of objects linked objects grouped together and managed by
one or more manager nodes.

• Each copy of NetView for AIX V3R1 can be configured as a Manager station
and/or a Backup manager station for some containers.

• Managers and Containers must exist as defined objects in the NetView for
AIX database.

• Each of the manager nodes will check the status of the other manager nodes
on the network. When one of the manager nodes becomes inactive, a
message box is displayed to notify the operator. On the backup manager
node, the container objects that were within the SOC of the failing manager
become managed. A separate submap is displayed to show the objects
located in the newly-managed containers.

Depending on the configuration, the backup manager does not have to
monitor all the containers, it may choose to monitor just critical ones for
example.

• When the inactive manager becomes active again, another message box will
appear, and the reversal takes place. The container objects that were taken
over by the backup manager will become unmanaged, once the operator has
closed the submaps they are in.

The objects do not become unmanaged immediately because the backup
manager may be performing tasks on them.

6.1.1 Management Example Scenario
In Figure 149 on page 196, an Area is defined as a group of Containers, that are
in the Sphere of Control (SOC) of a manager.

 Copyright IBM Corp. 1994 195

Figure 149. A possible SOC configuration

Manager function can be provided by either AIX NetView/6000 V2R1, or NetView
for AIX V3R1, but the backup manager function can only be provided by NetView
for AIX V3R1.

M1′s Sphere of Control comprises of Containers 1, 2 and 3 in Area 1, and M2′s
comprises Containers 3, 4 and 5 in Area2. In this example, note how M1 or M2
are both managing Container 3.

Assuming that both M1 and M2 are running NetView for AIX V3R1, they can each
provide backup management for the containers in the other manager′s SOC. For
example, we may define that M2 is the backup manager for Containers 1 and 2.

So how does M2 know when M1 goes down, and that M2 should take over the
management of Containers 1 and 2? The Netmon daemon in M2 keeps track of
the status of the M1 node. When M2 fails to poll M1, the Netmon daemon in M2
issues a Node Down trap for M1.

On the M2 machine, a window will be opened for each Container that was being
managed by M1. In our example, you will see submaps for Containers 1 and 2.
You will also notice that Containers 1 and 2 on the M2 IP map will change from
Unmanaged to Managed.

Container 3 was already being managed by M2, so you will see no change of
state for Container 3 on the M2 IP map, even if M2 is defined as a backup
manager for it.

196 Examples of Using NetView for AIX

When M1 returns to the network, M2 will successfully poll M1 and generate a
Node Up event. M1 has now resumed the management of Containers 1, 2 and 3.
So at this point, both M1 and M2 are managing Containers 1, 2 and 3.

M2 users who are still working with Containers 1 and 2, are prompted with a
message to close all submaps for Containers 1 and 2 when they have finished
working on them. This is done with the ″Manager Restored″ operator prompt
that you see in Figure 150.

Figure 150. Manager Restored Operator Prompt

The submaps in question must be closed from the navigation tree! When this
has been done, then the status of Containers 1 and 2, will change from Managed
back to Unmanaged.

 NOTE:

Notice that the takeover activity involves changing status of nodes from
Unmanaged to Managed and back again. It does not cause the network
discovery routines to be activated. This means that each of the manager
nodes must discover the full network before any management containers are
defined.

6.2 Configuring Managers and Containers
To configure a node as a manager and define the containers they will manage
do one of the following:

 1. Define and create a seed file,

or

 2. Use the Backup and Configuration option from the NetView for AIX V3R1 GUI.

As we have described above, the management takeover function relies on one
manager polling another. There is no direct manager-to-manager
communication. Therefore when a seed file is created it must be distributed to
all the relevant management nodes. There are a number of ways to define the
SOC for each manager.

Chapter 6. Manager Takeover 197

Example for Generating the Seed File

A seed file may be created manually, using a text editor. Later in this
chapter we show an example of a more automated way to build the seed file
by writing a simple NetView for AIX V3R1 application. You may want to read
this section before continuing (see 6.2.5, “Creating a Seed File Using a
NetView for AIX V3R1 Application” on page 199).

To assist in the design of the SOC and manager nodes on the IP network the use
of a planning form is recommended. An example of the form is shown in
Table 14.

6.2.1 Aids to Planning the Network Management Topology
Depending on the size and complexity of the managed network, defining the
takeover structure may be a complicated procedure. This section details some
useful methods to gain the relevant information before commencing.

The first time the Backup configurator is called from NetView for AIX V3R1 it will
display a list of containers as defined in the database. (See Figure 155 on
page 204) These values (objects) can be added to column one of the worksheet.
Alternatively you can build up a list of potential containers from the command
line by executing the commands:

ovobjprint
ovtopodump

These commands will list selection names and topology information from the
NetView for AIX V3R1 object database.

Table 14. Planning Sheet for what Container is Managed by what Manager

Container Managed by Backup managed by

9.24.104 RS60001, RS60003

9.67.32.64 RS60002 RS60003

9.67.38.64 RS60003 RS60002

Once all the containers have been selected the next task is to decide which
NetView for AIX V3R1 nodes are to be managers and backup managers for each
container, and to enter the information into the table.

6.2.2 Defining a Seed File
The Seed File is used to determine which nodes are managers and what the
relationships and associations are with each container. The seed file itself is
composed of three columns:

The columns are headed:

Active manager Container Backup Manager

Each entry in this file must be enclosed with double-quotes, for
example

″rs60002.itso.ral.ibm.com″ ″Segment1″ ″rs60003.itso.ral.ibm.com″
″rs60002.itso.ral.ibm.com″ ″9.20.30″ ″rs60003.itso.ral.ibm.com″

198 Examples of Using NetView for AIX

This example is specifying that the machine rs60002 will manage both Segment1
and 9.20.30. The backup machine will be rs60003 for both containers.

6.2.3 Creating a Seed File
It is critical to the management process that the seed file is defined accurately.

You can create a Seed File with an editor such as vi. Also you can create one
from the information that exists in the topology database. Here is a command
that will generate a section of a seed file by obtaining objects defined as
gateways from the object database and re-directing them to a text file.

ovtopodump -lr | \awk ′ / ^HOSTNAME:/ {hostname=$2}
/^FLAGS:.*GATEWAY/ {print hostname}′ > seed_file

The script will create a file called seed_file in the current directory.

Now you may want to include all the objects defined as networks or segments,
these are the most likely elements to define as containers. This can be done
using the following command:

ovtopodump -lr | grep ″NETWORK NAME″ | cut -d″ ″ -f3
>> seed_file

This file now contains all the Network and gateway names for devices in the
current network. You can now add any other containers as required. This file
must now be modified to insert the names of the managers and the Backup
manager(s).

A main problem with this approach is that if you have a large network then the
output from these commands may be quite large and it will be quite difficult to
relate the information with the NetView for AIX V3R1 IP map.

6.2.4 Using the Seed File with the NetView for AIX
After you determined and created a seed file you must pass it to the backup
process to allow to the NetView for AIX to use it.

The seed file is passed to the backup process by modifying the command line for
the backup process in the application registration file,
/usr/OV/registration/C/backup .

Edit this file and find the line:

Command -Shared -Initial -Restart ″${BackupDir:-/usr/OV/bin}/backup″ ;

Add the name of the seed file as follows:

backup •-s /path/seed_file_name‘″ ;

6.2.5 Creating a Seed File Using a NetView for AIX V3R1 Application
This example consists of a number of ′C′ programs, shell scripts and
modifications to the NetView for AIX registration files. The objective is to provide
a facility to create a seed file using a ″point and shoot″ approach. Once this
configuration has been set up it will allow fast and efficient generation of seed
files.

Chapter 6. Manager Takeover 199

This example shows a real situation, so the reference to specific nodes and
networks will have to be tailored to suit different environments.

This list describes the programs created for this automatic seed file generation
example:

• build_seedfile.c - Application code called from the NetView for AIX
pull-down menus.

• req_seed.ksh - Shell script to prompt for a seed file to run the backup
process.

• build_seedfile.ksh - Shell script to prompt for the manager and backup
manager node names

The programs were located in the following directories.

build_seedfile - /u/paul/progs/build_seedfile

req_seed.ksh - /u/paul/progs/req_seed.ksh

build_seed.ksh - /u/paul/progs/build_seed.ksh

These programs are listed in Appendix B, “Automatic Seed File Example
Programs” on page 251.

The process we followed is described below:

• Modify the backup registration file /usr/OV/registration/C/backup to read as
shown in Figure 181 on page 251. This defines menu entries under the
Administer->Backup path and also specifies that the backup daemon is
started automatically when NetView for AIX V3R1 is started. The only
change we have made to this is to add the ″Build Seedfile″ entry and its
associated Action definition.

• Re-start NetView for AIX to incorporate the changes made.

• Open the IP-Internet Map shown in Figure 151 on page 201.

200 Examples of Using NetView for AIX

Figure 151. ITSO Raleigh Network IP Map

• Select the two Segments itso.ral.ibm.com and 9.67.46 (These will be the
containers)

• From the pull-down menu: choose our new
option:->Administer->Backup->Build Seed File. This will open the window
Figure 152 on page 202

Chapter 6. Manager Takeover 201

Figure 152. Build Seed File

• Enter the selection name for the manager and backup manager nodes for
the selected containers (the selection name is the name by which the
manager is known in the NetView for AIX V3R1 object database. As we are
using DNS, this is the fully-qualified domain name).

• Select the internet icon 9.67.38.64

• From the pull-down menu choose ->Administer->Backup->Build

• Enter (a) to append, and rs60003 as the manager and rs60002 as the backup.

• The seed file generated by this sequence of actions is shown below:

″rs60002.itso.ral.ibm.com″ ″itso.ral.ibm.com″ ″rs60003.itso.ral.ibm.com″
″rs60002.itso.ral.ibm.com″ ″9.67.46″ ″rs60003.itso.ral.ibm.com″
″rs60003.itso.ral.ibm.com″ ″9.67.38.64″ ″rs60002.itso.ral.ibm.com

Figure 153. Example Seed File

• From the pull-down menu choose Administer->Backup->Read Seedfile (See
Figure 154 on page 203).

• Enter the name of the seed file. (/u/paul/seed/seed_file)

202 Examples of Using NetView for AIX

Figure 154. Read Seed File

Different Seed Files

Although we only used Read Seed File for testing purposes, there may be
examples where you want to use the facility in production. For example
there may be a requirement to run different seed files on a regular basis
for management control at differing times of the day, for example, one
version of NetView for AIX V3R1 for working hours and another for night
time cover. In such a case the script would have to be modified to kill
the existing backup routine and restart with the new configuration.

• The backup process has now started for this node.

To check the configuration do the following:

• From the pull-down menu select Administer->Backup->Backup
Configuration.

• From this screen (Figure 155 on page 204) select rs60002.itso.ral.ibm.com.

• Check the information on the screen (Figure 156 on page 204).

Chapter 6. Manager Takeover 203

Figure 155. Initial Backup Configuration Screen

Figure 156. Complete Backup Configuration Screen

The configuration shown is the manager configuration settings for the node
rs60002. The window titled ″Selected Containers″ shows which of the containers
are actively being managed and those which this node is a backup manager for
(for example, the ones chosen from the NetView for AIX V3R1 GUI).

204 Examples of Using NetView for AIX

There should be no further need to execute the build seed file option again.
Once the data has been entered in the NetView for AIX database it will always
appear.

6.3 Running the Backup Process
The NetView for AIX daemon that initiates the management takeover process is
called backup; there is no relation to the standard AIX command by the same
name. Always supply the full path name of this command /usr/OV/bin/backup.

If there is a requirement to change the management associations after the seed
file is used (for example, adding one new container to a particular manager)
then this should be done using the Backup Configurator described in 6.4,
“Backup Configuration EUI” on page 205.

If an association has been made in error, or a configuration change required,
then this is achieved by using the Backup Configurator to remove the selected
containers for a particular manager and changing the isManager option to false.

6.4 Backup Configuration EUI
The Backup Configurator is a graphical user interface application. This can be
used by an operator to view and/or modify the configuration of Backup Managers
and/or Containers. The Backup Configurator is started from the NetView for AIX
V3R1 menu bar under: Administer → Backup → Backup Configuration.

Figure 157. Example of a Backup Configurator Init ial Screen

To exit the application, just click on Cancel.

The list under the heading Containers shows all objects found in the NetView for
AIX Database, that match the Internet, Network, Location or Segment object
selection criteria. From this initial screen you select either a Manager or a
Container to work on.

You must have the current map open in read-write mode to configure the
manager.

Chapter 6. Manager Takeover 205

6.4.1 Adding a New Manager to the Backup Configuration
If the seed file was not used when starting the backup process, then no
managers should be listed in the Managers selection box. To add a manager,
choose one of the following:

 1. Click on the Managers selection window, and then type in the name of the
manager, and then select OK.

 2. Select a manager on the IP map, and then press the Select from Map button
on the Backup Configurator menu.

You are then presented with a screen like that in the example in Figure 158.

Figure 158. Backup Configurator with RS60003 Selected (isManager=False)

Notice that initially the isManager flag is set to False. Change this flag to True,
and the node is added to the managers list. Changing the flag back to False
removes the node from the managers list.

When set to True, as in the example in Figure 159 on page 207, you cannot
select the Containers that you want to be managed by this manager from the
Available Containers list.

206 Examples of Using NetView for AIX

Figure 159. Backup Configurator with RS60003 Selected and isManager=True

When you select a Container, the Container will be added to the Selected
Container list. Now you have the possibility for this Manager to be either an
Active Manager or a Backup manager, the default here is the Backup
association between that Container and this Manager.

Note that this will make no change to the management status of this Container
on other NetView/6000 managers.

For specific conditions on changing colors (or changing states) of Containers on
the Maps, see Table 15 on page 208.

Chapter 6. Manager Takeover 207

Table 15. Seen from RS60003, Colors of Container on IP Internet Map

Container Managed by RS60002
(remote)

Managed by RS60003
(local)

State on IP Internet map

9.67.46 N N Managed

9.67.46 Y N Unmanaged

9.67.46 Y Y Managed

9.67.46 N Y Managed

9.67.46 Y Y Managed

Figure 160. Highlighted Symbol is the Only One managed

208 Examples of Using NetView for AIX

Figure 161. Highlighted Symbols Have Changed Color

If you are configuring a remote manager, for example a NetView for AIX V3R1
management station other than yourself, then the status of the Container on the
local IP submap will not change.

If you are adding a Container to the local manager, then it will only become
managed when it has been removed from the Active Container list for the
remote manager.

Remember that the configuration information is held locally by the machine
running the configuration utility, so what is important is what the local manager
perceives to be the configuration of the remote manager. It might be that the
configuration of the remote manager shows a different picture. The result is that
it is important that the distribution of backup configuration information is
coordinated among NetView for AIX V3R1 managers.

When you change the isManager flag back to true, you also get a message
saying that this manager has returned to the network, as in Figure 150 on
page 197.

For some other examples, see Figure 162 on page 210.

6.4.2 Container Configuration
If you select a Container from the Containers list, you can select the manager or
managers that should manage this Container. If this configuration has already
been done, then you will get a list of the managers managing this Container.

Chapter 6. Manager Takeover 209

6.4.3 Configuration Summary
 1. You can configure the manager backup configuration using the Backup

Configurator EUI. Use this only for local changes; otherwise use a seed file
instead, and distribute it among all of the managers in the backup
configuration.

 2. The configuration can be done from the perspective of the manager, or from
that of the Container.

 3. The configuration information is held locally to the manager doing the
configuration process. There is no manager-to-manager communication.

Figure 162. Backup Configurator with RS60003 Managing Some Containers

6.5 The ITSO Environment
In the example scenario there are three machines included in the takeover
configuration. These are:

 1. RS60001 running NetView for AIX V3R1

 2. RS60002 running AIX NetView/6000 V2R1

210 Examples of Using NetView for AIX

 3. RS60003 running NetView for AIX V3R1

The following shows two manager-failure scenarios:

 1. RS60001 and RS60003 - both running NetView for AIX V3R1

 2. As in item 1, but now including RS60002 which is running an old version of
AIX NetView/6000

For all our testing we used shell scripts to raise the relevant Node Up and Node
Down events. The manager takeover process relies on these events to trigger
all backup and return functions. Normally Node Up and Node Down are
generated internally by the netmon daemon, as a result of its regular polling
cycle. This implies that a manager failure is detected only when the machine on
which NetView for AIX is running fails. However there are some situations in
which the machine may still be running, but we still wish for takeover to happen,
for example:

• When testing (as in our case)

• When carrying out maintenance on the machine

• When backing up or re-configuring the machine

In these cases it is useful to be able to trigger manager takeover without having
to take the machine on which the failing manager runs offline.

Our example extends the takeover process so that the the status a critical
NetView for AIX process is monitored. We check that the netmon daemon is
running. Without netmon, NetView for AIX will not perform any network polling,
so its existence is a good measure of the health of a NetView for AIX system.

The shell script shown in Figure 163 on page 212 is started by NetView for AIX
V3R1 after netmon has been initiated. If netmon fails, then the script generates
an SNMP TRAP advising all hosts named in /etc/snmpd.conf of a node down
condition.

When netmon is restarted, it sends an SNMP TRAP advising of a node up
condition.

Chapter 6. Manager Takeover 211

Figure 163. A Shell Script to Test for a Running Netmon

The netmtst.ksh script calls ndlex.awk and nulex.awk, and these are shown
below.

ndlex.ksh and nulex.ksh

ndlex.awk: awk ′$1∼ /trap/ {system(″ndlex.ksh ″ $3)}′ /etc/snmpd.conf
nulex.awk: awk ′$1∼ /trap/ {system(″nulex.ksh ″ $3)}′ /etc/snmpd.conf

The contents of ndlex.ksh and nulex.ksh looks like:

ndlex.ksh:
#!/bin/ksh
h o s t = ′hostname ′
snmptrap $1 .1.3.6.1.4.1.2.6.3 $host 6 58916865 0 \

.1.3.6.1.4.1.2.6.3.1.1.2.0 Integer 9 \

.1.3.6.1.4.1.2.6.3.1.1.3.0 OctetString ″LexMol″ \

.1.3.6.1.4.1.2.6.3.1.1.4.0 OctetString ″Node Down″
nulex.ksh:

#!/bin/ksh
h o s t = ′hostname ′
snmptrap $1 .1.3.6.1.4.1.2.6.3 $host 6 58916864 0 \

.1.3.6.1.4.1.2.6.3.1.1.2.0 Integer 9 \

.1.3.6.1.4.1.2.6.3.1.1.3.0 OctetString ″LexMol″ \

.1.3.6.1.4.1.2.6.3.1.1.4.0 OctetString ″Node Up″

In order to register this script to NetView for AIX V3R1, the following LRF file
should be placed in /usr/OV/lrf:

212 Examples of Using NetView for AIX

 /usr/OV/lrf/netmtst.lrf

netmtst : /u/lex/netmtst.ksh :
OVs_YES_START : Netmon : : OVs_NON_WELL_BEHAVED : :

Issue the ovaddobj netmtst.lrf command to add this object to the NetView for
AIX V3R1 database.

6.5.1 Using Netmon Status to Drive Manager Backup, Case 1

6.5.1.1 Manager Failures with All Managers Running NetView for
AIX V3R1
In this sample configuration, RS60002 is the backup for RS60003, and RS60003 is
the backup for RS60002.

The manager - Container backup was designed according to the table shown in
Table 16.

Table 16. Manager / Container Design for Scenario 1

Container Managed By Backup Managed By

9.24.104 RS60001 and RS60003 None

9.67.32.64 RS60001 RS60003

9.67.38.64 RS60003 RS60001

For the design in Table 16, we made the seed file that is shown in Table 17 on
page 214. This seed file was distributed to RS60001 and RS60003.

As RS60001 and RS60003 are both within network 9.24.104, both NetView for AIX
V3R1s were managing this network.

The following tests were done to see what happened on the NetView for AIX
V3R1 of each management station.

 Expectations

Whenever a Node down trap is received by NetView for AIX V3R1 for any
Manager that has NetView for AIX V3R1, we should get a pop up screen as
can be seen in Figure 164 on page 215. Some time later we should get a
window created by NetView for AIX V3R1 for each Container where our
NetView for AIX V3R1 is a Backup Manager for.

Whenever a Node up trap is received for a NetView for AIX V3R1 we have
taken over a resource from, we should get a screen as can be seen in
Figure 150 on page 197.

It is not be important how those traps are created. They can be done via
snmptrap or done by NetView for AIX V3R1 itself after discovering the
down/up situation.

 1. Start NetView for AIX V3R1 on both machines with the seed file in Table 17
on page 214.

 2. Check the configuration via the Backup Configuration menus.

Chapter 6. Manager Takeover 213

 3. Bring down NetView for AIX V3R1 on RS60001 and observe the changes to
NetView for AIX V3R1 on RS60003.

 4. Observe the changes to the IP Internet map on RS60003.

Table 17. Seed File Contents of RS60001 and RS60003

Active Manager Container Backup Manager(s)

″rs60001.itso.ral.ibm.com″ ″9.24.104″

″rs60001.itso.ral.ibm.com″ ″9.67.32.64″ ″rs60003.itso.ral.ibm.com″

″rs60003.itso.ral.ibm.com″ ″9.24.104″

″rs60003.itso.ral.ibm.com″ ″9.67.38.64″ ″rs60001.itso.ral.ibm.com″

6.5.1.2 Observations from Two NetView for AIX V3R1 Managers
 1. Machines started OK.

 2. Displayed backup configuration as per the seed file.

 3. The effect of stopping NetView for AIX V3R1 on RS60001:

Originally, no change on RS60003.

This is to be expected as the termination of NetView for AIX V3R1, does not
generate a Node Down trap.

This was one of the reasons for creating the shell script (mentioned earlier)
for checking the availability of the Netmon application. The other reason is
described under 6.5.3, “Effect on RS60003 of the Return of RS60001” on
page 215.

To simulate a NetView Down situation we ran the command:

ovstop netmon

To revive the netmon daemon we issued the command:

ovstart netmon

This tested the failing of the NetView for AIX V3R1 daemon.

After the implementation of these scripts, the results were the same as
described under 6.5.2, “Effect on RS60003 of a Re-IPL of RS60001.”

6.5.2 Effect on RS60003 of a Re-IPL of RS60001
A re-IPL of RS60001 generates a Node Down trap. When this is done, then any
versions of NetView for AIX V3R1 running on RS60003 will have maps created on
the desktop for all the Containers that were managed by RS60001, before the
node down event. In our example, you see maps created for 9.67.32.64. This
Container, was unmanaged on RS60003 before the failure of RS60001, but now
they become actively managed on RS60003.

All users of RS60003 received a message to advise them that
RS60001.itso.ral.ibm.com is down. An example of that screen is shown in
Figure 164 on page 215.

214 Examples of Using NetView for AIX

6.5.3 Effect on RS60003 of the Return of RS60001
As soon RS60001 returns, a Node Up was received on RS60003, advising that
RS60001.itso.ral.ibm.com has returned to the network. An example of the
message is shown in Figure 150 on page 197. Originally you do not know if
NetView for AIX V3R1 is up again on RS60001. This was the second useful
reason for running the netmtst.ksh script.

Figure 164. Manager Down Message

At this point, the operators of RS60003 have been told that RS60001 is now
managing 9.67.32.64, but we can′ t be sure that NetView for AIX V3R1 has become
active on host RS60001, as we will see the node up event before NetView for AIX
V3R1 is active.

On the Navigation Tree on RS60003, we then closed the maps related to
9.67.32.64, and observed that 9.67.32.64 became Unmanaged on the RS60003 IP
map.

6.5.4 Using Netmon Status to Drive Manager Backup, Case 2
In this case RS60002 is the backup for Container 9.67.32.64.Segment of RS60001
and all of RS60003.

RS60003 is the backup for Container 9.67.32.64 of RS60001 and all of RS60002.

Table 18. Seed File Contents of RS60001, RS60002 and RS60003

Manager Container

rs60001.itso.ral.ibm.com 9.67.32.64.Segment1

rs60002.itso.ral.ibm.com 9.24.104

rs60002.itso.ral.ibm.com 9.24.104.Segment1

rs60002.itso.ral.ibm.com 9.67.46

rs60002.itso.ral.ibm.com 9.67.46.Segment1

rs60003.itso.ral.ibm.com 9.24.104

rs60003.itso.ral.ibm.com 9.24.104.Segment1

rs60003.itso.ral.ibm.com 9.67.32.64

Just as in Case 1, we installed the netmtst (and related) scripts on NetView
machines, to test the running of the Netmon application.

To simulate a NetView Down situation we ran the command:

Chapter 6. Manager Takeover 215

ovstop netmon

To restart NetView again we issued the command:

ovstart netmon

We saw the takeover of Container 9.67.32.64 by RS60003 and Container
9.67.32.64.Segment1 by RS60002.

When we brought down RS60002 now, RS60003 took over 9.67.32.64.Segment1,
9.67.46 and 9.67.46.Segment1.

Now we started Netmon on RS60001 again (RS60002) still down).

On RS60003 this gave the message RS60001 came back to the network, so we
could close (via the Navigation Tree) 9.67.32.64 and 9.67.32.64.Segment1.

6.6 Usage Notes
The following are a few items to consider:

 1. Do not Un-manage Backup Managers.

The local Manager is not polling that Backup Manager anymore. In this case
it will not see the failure of that Manager, unless you have arranged the
nodes as discussed in 6.5, “The ITSO Environment” on page 210. and in
Figure 163 on page 212.

 2. You can increase the poll ing rate for remote Managers.

 3. In order to see only the remote managers Node-Up an Node_Down traps,
you can create a dynamic workspace and filter only the Remote Manager
events. This will show the status of the Remote Managers.

 4. Do not use names longer then 100 characters.

 5. When a Manager takeover has occurred, the traps sent to the Manager that
went down are still sent. There is no automatic method for changing the trap
destination address in the agents that were sending traps to the just went
down Manager. A way to solve this could be one of the following:

a. Have all agents send traps to all managers.
b. Make a shell script that changes the trap destination address

dynamically of all agents involved.

216 Examples of Using NetView for AIX

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API

This chapter summarizes wtdriver6 and its interface with wteuiap6. These are
sample NetView for AIX EUI API application programs developed during ITSO
residency programs.

In a previous redbook: Examples of Using AIX NetView/6000 APIs, GG24-4059,
other ITSO-developed sample APIs were discussed. In particular,
wtdriver/wteuiap1 and wtdriver2/wteuiap3 were presented. wtdriver6, together
with wteuiap6, are replacements for these previous examples.

In addition to additional user functions which are provided by wtdriver6/wteuiap6
over earlier examples, the newer code solves EUI application problems which
arise when multiple NetView for AIX operators or maps are active on the same
system.

7.1 Summary of NetView for AIX Interfaces
The following figure summarizes interfaces which are available for particular
functions and are available for use by NetView for AIX operators and application
programs which implement API coding.

 Copyright IBM Corp. 1994 217

Figure 165. Overview of Possible User Interfaces with NetView for AIX

7.2 ITSO wteuiapx EUI Samples
wtdriverx/wteuiapx are a series of samples giving general-purpose topology
manipulation.

Previous to the current wteuiap6, the following general application structure
existed.

218 Examples of Using NetView for AIX

┌───────────────────┐ TaU
│ Registration File │ Something
└─────────┬─────────┘ │

│ (
┌───────┐ (┌─────────┐

 │NV/6000│ ┌──┐ │ │
 │Event Q│ │ Application Server │ │ Driver │
 └───┬───┘ │ │ │ Program │
 │ │ ┌────────────────┐ ┌─────────────────┐ │ │ │
 │ │ │ │ │ │ │ └──────�──┘
 │ │ │ NV/6000 API │ │ AIX │ │ │
 └───────┼.│ Event │ │ Socket │Z┼────────┐ │

│ │ Handler │ │ Handler │ │ Socket/
│ │ │ │ │ │ Port
│ │ │ │ │ │ 6000
│ └────────────────┘ └─────────────────┘ │ ┌───┴─┴─┐
└────────────────────┬─────────────────────┘ │ AIXV3 │

│ │ │
(└───────┘

┌─────────────────────────────────────┐
│ Process Routines │
│ │
│ ┌─────────────────────────────────┐ │
│ │ Callback │ │
│ │ Routines │ │
│ └─────────────────────────────────┘ │
└─────────────────┬───────────────────┘

│
(

┌──┐
│ │
│ NV/6000 End User Interface │
│ and Object Database │
│ │
└──┘

Figure 166. Overview of Example Application wteuiap3

As use of the above general structure evolved, problems were identified,
including:

• If multiple operators or multiple NetView for AIX maps were concurrently
active in the same NetView for AIX, the previous general structure was
insufficient to allow for user access and control of eui functions.

• As multiple applications joined the NetView for AIX family of products and
user application needs evolved, requirements such as controlling multiple
(base/root) maps related to a particular application and the need for
″merged views″ of submaps required a restructuring of the ITSO sample EUI
application.

wtdriver6/wteuiap6 address these problems.

Hereafter, for convenience, we will refer to this application as wteuiap6;
however, keep in mind that the user interface to wteuiap6 is via a driver and
wteuiap6 involves other daemons as discussed briefly in the remainder of this
chapter. TaU in Figure 166 on page 219 represents the user′s entrance into the
wteuiapx applications, including wtdriver6/wteuiap6. This similarity in use from

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 219

the user′s point of view allows for an easy transition from prior wtdriver
approaches into the current wtdriver6/wteuiap6 support.

As wteuiap6 was developed, it was decided to define daemons within the
NetView for AIX structure, summarized in Figure 167 on page 220. This means
that as users of NetView for AIX use commands such as ovstart, the wtxxxxx
daemons will be identified. If the user suspects an error with wtxxxxx, the user
should contact ITSO via normal non-defect product support; wtxxxxx daemons
are not part of NetView for AIX The wtxxxxx daemons implement NetView for
AIX standard support, but are only user applications and not part of the product
code.

┌────────────────────┐ ┌──────────────────────┐ ┌───────────────────┐
│ │ │ │ │ │
 │ Well Behaved │ │ Not Well Behaved │ │ Classic Daemons │
 │ │ │ │ │ │
└────────────────────┘ └──────────────────────┘ └───────────────────┘

� � �
TaU │ TbU │ TcU │

│ │ │
│ │ │
│ │ │
└─────────────────┐ │ ┌──────────────────┘

│ │ │
TdU │ │ │

│ │ │
(│ │

┌─────────┴─────┴─────┐
│ │
│ ovspmd │
│ │
└─────────────────────┘

Figure 167. Overall NetView for AIX Daemon Structure

The ovspmd daemon controls all the daemons of NetView for AIX . Daemons are
classified by ″interaction quality″ :

• TaU ″Well Behaved″ programs

(OVs_WELL_BEHAVED in .lrf file)

• TbU ″Not Well Behaved″ programs

(OVs_NOT_WELL_BEHAVED in .lrf file)

• TcU Classic Daemons

(OVs_DAEMON in .lrf file)

Well behaved programs are launched by ovspmd and report status to it TdU.
ovspmd tracks the process status and last message issued. It also manages an
intelligent timeout for startups and shutdowns.

Not well behaved programs are launched by osvpmd but the only thing it can do
is check if they are still there (or have died) and kill them on demand (ovstop).

Classic daemons are the common unix daemons; they go into the background on
their own initiative and ovspmd loses control of them.

220 Examples of Using NetView for AIX

It was decided, as wteuiap6 evolved, to make the application
OVs_WELL_BEHAVED. It helped in debugging and program development.

7.2.1 wteuiap6 Addressing the Multiple Operator Requirement
wteuiap6 solution was to add a daemon (wtpbbxd) which maintains
synchronization between different operators as shown in Figure 168 on
page 221.

┌──┐
│ │
│ NetView EUI │
│ │
└─────┬──────────────────────────┬─────────┘

│ � │ �
│ │ │ │
│ │ │ │
│ │ │ │
(│ (│

┌─────────┴─────┐ ┌─────────┴─────┐
│ │ │ │
│ IP map │ │ wteuiap6 │
│ │ │ │
└─────┬─────────┘ └─────┬─────────┘

│ � │ �
│ │ │ │
│ │ │ │
│ │ │ │
(│ (│

┌─────────┴─────┐ ┌─────────┴─────┐ ┌───────────────┐
│ │Z─────────┤ │Z─────────┤ │
│ ovwdb │ │ wtpbxd │ │ wtdriver6 │
│ ├─────────.│ ├─────────.│ │
└───────────────┘ └───────────────┘ └───────────────┘

Figure 168. wteuiap6 Daemon Structure

wtpbxd registers for map open/close events and implements wtdriver6 requests
on all open maps (the user can specify which one). The default is the Map
originally opened by the operator at a particular workstation/process id.

Figure 169 on page 222 summarizes the implemented approach.

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 221

┌───────┐┌┐┌──────────┐┌┐
 │ ovw ││││ wteuiap6 Z┼┼─────┐ ┌──────┐ ┌──────┐
 │ ││││ │││ │ │IP │.│Port │
 └───────┘└┘└──────────┘└┘ │ └──────┘ └──────┘

│ ┌───┐┌──────────┐
└───────┼───┼. wtpbxd │

 ┌───────┐┌┐┌──────────┐┌┐ │ ││ Z───┐
 │ ovw ││││ wteuiap6 Z┼┼─────────────┼───┼. │ │
 │ ││││ │││ ┌───────┼───┼. │ │
 └───────┘└┘└──────────┘└┘ │ └───┘└─�────────┘ │

│ ┌──────────┘ ┌─────────┘
│ │ │

 ┌───────┐┌┐┌──────────┐┌┐ │ │ ┌───────(────────────┐
 │ ovw ││││ wteuiap6 Z┼┼─────┘ │ │ │
│ ││││ │││ │ │ ┌──┬───┬────┬────┐ │

 └───────┘└┘└──────────┘└┘ ┌──────┘ │ │AP│Map│Mode│Disp│ │
│ │ ├──┼───┼────┼────┤ │
│ │ │AP│Map│Mode│Disp│ │

┌───────┐┌┐┌───────(──┐┌┐ │ ├──┼───┼────┼────┤ │
│ ovw ││││ wtdriver6│││ │ │AP│Map│Mode│Disp│ │
│ ││││ │││ │ ├──┼───┼────┼────┤ │
└───────┘└┘└──────────┘└┘ │ │ │ │ │ │ │

│ └──┴───┴────┴────┘ │
└────────────────────┘

Figure 169. wteuiap6 and Mult iple EUIs

7.3 Installing and Managing wteuiap6
The ″make install″ will compile all the modified sources and install them in the
correct places.

The following summarizes the install and maintenance functions which are
provided:

222 Examples of Using NetView for AIX

 make install - To compile and install on the NetView directories

 make uninstall - To remove wt6 from the NetView directories

 make tar - To create a tar file with your source

 make floppy - To create a tar floppy with your source

 make - To compile wt6.

Files:
wtpbxd.lrf - Describes wtpbxd to ovspmd (On /usr/OV/lrf)

wteuiap6.reg - Describes wteuiap6 to ovw (On /usr/OV/registration/C)

Programs: (On /usr/OV/raleigh - Add it to your $PATH)
wtpbxd - will be launched by ovspmd (NetView daemon)

wteuiap6 - will be launched by ovw (NetView End-User Interface)

wtdriver6 - will be run by you on the command line or shell scripts

Figure 170. wteuiap6 Install and Maintenance Options

After ″make install″ you (as a user) interface with wtdriver6.

It, in turn, drives wteuiap6.

In the background (you don′ t care!) is wtpbxd.

After ″make install″ the routines are in /usr/OV/raleigh as:

-rwxr-xr-x- 1 root system 72019 Jan 13 17:57 wtdriver6

-rwxr-xr-x- 1 root system 120373 Jan 13 17:57 wteuiap6

-rwxr-xr-x- 1 root system 100518 Jan 13 17:57 wtpbxd

The user interfaces with the above through wtdriver6.

wtdriver6 -> talks with -> wteuiap6

The user is not concerned with wtpbxd.

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 223

7.4 wtdriver6 Functions
The following figure summarizes use of wtdriver6/wteuiap6.

Usage: wtdriver6 [flags] command [...]
Flags:

[-h wtpbxd-hostname] - Specify the machine that is running wtpbxd
(default is local)

[-b] - Send the request to all displays (broadcast)
[-d target-display] - Send the request to a specific display
[-f submap-name] - Define the focus (just for this command)
[-m map-name] - Send the request to a specific map

Commands:
stat
msg message
focus submap_name
popup submap_name
submap submap_name [layout] [background-image]
submapof submap_name object_name [layout] [background-image]
copy symbol_name submap_name submap_name
move symbol_name submap_name submap_name
sort submap_name [keys]
getlabel object_name
add symbol_name symbol_type

[x y]
[label symbol_label]
[submap submap_name]
[exec appl_name action_name]

del symbol_name
connect symbol_name symbol_name
set symbol_name status
assoc object_name field_name [field_value]
delobj object_name
cloneseg network_name segment_number

Figure 171 (Part 1 of 4). Summary of wtdriver6/wteuiap6 Functions

224 Examples of Using NetView for AIX

Note:
keys are:

 l - symbol label
 t - symbol type
 s - symbol status
 o - object status
 c - compound status

some symbol types are: mf for ″Computer:Main Frame″
ws for ″Computer:Workstation″
cr for ″Connector:Multi-port″
ap for ″Software:License″
ss for ″Software:Process″

[If you want to check for the abbreviation table,]
[edit wteuiap6.c and search for symabbrev]

or anything valid in /usr/OV/symbols/C
such as from: /usr/OV/symbols/C/Cards

″Cards:Audio″
″Cards:Video″
″Cards:Thin LAN″

another example, from:
/usr/OV/symbols/C/Server

″Server:File System″

set status may be: unknown
normal
marginal
critical
acknowledge
up
down

Figure 171 (Part 2 of 4). Summary of wtdriver6/wteuiap6 Functions

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 225

5. Some User fields are:

/*****

* Field Registration file for wteuiap6
* isUP field for application identify the component is UP or Down

*****/

Field ″Software Status″ {
Type StringType;

}
Field ″mqseries_field_one″ {

Type StringType;
}
Field ″IDNX_Field_One″ {

Type StringType;
}
Field ″IDNX_Field_Two″ {

Type StringType;
}
Field ″WT Merge Id″ {

Type StringType;
}
Field ″Some Integer″ {

Type Integer32;
}
Field ″Some String″ {

Type StringType;
}

6. The wteuiap6 registration file (in /usr/OV/registration/C) is:
(This is used at EUI initiation time)

/*
Registration for OVw API sample application WTEUIAP6
@(#)$Revision: 1.9 $ $Date: 1994/08/30 21:13:31 $
*/

Application ″OVw API Example WTEUIAP6″ {

// wteuiap6 resided in the path /usr/OV/raleigh/wteuiap6
// it will be initated after NV/6k is running .

Command -Initial -Shared -Restart ″ /usr/OV/raleigh/wteuiap6″ ;
}

7. The wtpbxd registration (in /usr/OV/lrf) is:
(This is used at ovstart initiation time)

Figure 171 (Part 3 of 4). Summary of wtdriver6/wteuiap6 Functions

226 Examples of Using NetView for AIX

wtpbxd:/usr/OV/raleigh/wtpbxd:
OVs_YES_START:ovwdb::OVs_WELL_BEHAVED:10:

8. When adding an icon with a submap below it (″submap″ option in ″add″
function above), the default submap name will be the same as the
icon it is hung from

9. When adding an executable icon (″exec″ option in ″add″ function
above), the ″appl_name″ and ″action_name″ come from entries in the
registration files. For example if you look in /usr/OV/registration/C
you will find a file ″mailtool″ containing appl_name ″Mail Tool″ and
action_name ″mailtool″ . To create a symbol that executes this you would
do something like: wtdriver6 add Mail ss exec ″Mail Tool″ mailtool

Figure 171 (Part 4 of 4). Summary of wtdriver6/wteuiap6 Functions

7.5 Output of wtdriver6 stat
The following is an example of what wtpbxd is managing when multiple NetView
for AIX operators are online with the EUI and open maps in read/write mode.
The command entered was: wtdriver6 stat.

 pbxd: Statistics:
Total Calls: 5
With a bad magic number: 0
With a bad version number: 0
With a bad command number: 0
Which leaves 5 good calls

 EUI Table, 3 entries

 Entry Mode Map X-Display Application
Pid IP Address.Port

[0] RW shogm1 rs60003:0.0 EUI Application 6
50412 127.0.0.1.3396

[1] RW robmacg itsoxst46:0.0 EUI Application 6
58837 127.0.0.1.4832

[2] RW barry itsoxst43:0.0 EUI Application 6
65486 127.0.0.1.1169

In the above situation, commands could (for example) be targeted to the NetView
for AIX maps as:

wtdriver6 -d rs60003:0.0 -m shogm1 submap inventory
wtdriver6 -d rs60003:0.0 -m shogm1 add appl1 ap 50 10
wtdriver6 -m rs60003:0.0 -m shogm1 set appl1 up

wtdriver6 -d itsoxst46:0.0 -m robmacg submap finance
wtdriver6 -d itsoxst46:0.0 -m robmacg add appl2 ap 50 10
wtdriver6 -d itsoxst46:0.0 -m robmacg set appl2 up

wtdriver6 -d itsoxst43:0.0 -m barry submap forums
wtdriver6 -d itsoxst43:0.0 -m barry add appl3 ap 50 10

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 227

wtdriver6 -d itsoxst43:0.0 -m barry set appl3 up

The operator managing shogm1 would see the inventory submaps and
resources, the operator managing robmacg would see the finance submaps and
resources, and the operator managing barry would see the forums submaps.

All wtdriver6 commands as shown in Figure 171 on page 224 (including copy of
submaps for merging resources into one operator′s-managed submap) are
possible and manageable.

7.6 wteuiap6 Example 1
Adding a location symbol with a submap under it to the Root map:

wtdriver6 -m RobMacg focus root
wtdriver6 -m RobMacg add Europe Location:.Europe submap

Next, adding some nodes to the new submap:

228 Examples of Using NetView for AIX

wtdriver6 -m RobMacg focus Europe
wtdriver6 -m RobMacg add London Transceiver:″Satellite equipment″ 50 10
wtdriver6 -m RobMacg add Paris Transceiver:″Satellite equipment″ 60 30
wtdriver6 -m RobMacg add Berlin Transceiver:″Satellite equipment″ 80 30
wtdriver6 -m RobMacg add Madrid Transceiver:″Satellite equipment″ 10 80

Then, connecting the nodes together (submap focus already done):

wtdriver6 -m RobMacg connect London Paris
wtdriver6 -m RobMacg connect London Berlin
wtdriver6 -m RobMacg connect London Madrid
wtdriver6 -m RobMacg connect Berlin Paris
wtdriver6 -m RobMacg connect Berlin Madrid

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 229

Setting node statuses (Paris is down...):

wtdriver6 -m RobMacg set London up
wtdriver6 -m RobMacg set Paris down
wtdriver6 -m RobMacg set Berlin up
wtdriver6 -m RobMacg set Madrid up

230 Examples of Using NetView for AIX

7.7 wteuiap6 Example 2
The following shell summarizes this example:

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 231

wtdriver6 -m shogm1 focus Root

wtdriver6 add ITSO_MQSeries Network:Network

wtdriver6 submapof ITSO_MQSeries ITSO_MQSeries

wtdriver6 assoc ITSO_MQSeries ″Some String″ ″If Problems,
contact: Peter Swanson, Bldg 657, Phone: 01-932-3457″

wtdriver6 -m shogm1 focus ITSO_MQSeries

wtdriver6 add rs60003_mq ap

wtdriver6 add rs60002_mq ap

wtdriver6 assoc rs60003_mq ″Some String″ ″IBM MQSeries.
Contact Bob Johnson of ITSO-Raleigh″

wtdriver6 assoc rs60002_mq ″Some String″ ″IBM MQSeries.
Contact Nancy Smith of ITSO-Raleigh″

wtdriver6 connect rs60003_mq rs60002_mq

wtdriver6 connect rs60003_mq rs60002_mq

wtdriver6 -m shogm1 focus ″rs60003_mq to rs60002_mq″

wtdriver6 add somequeue ss 50 10 exec MQSeries_ITSO show_MQSeries_status

wtdriver6 del rs60003_mq

wtdriver6 assoc somequeue ″mqseries_field_one″ ″some queue information″

wtdriver6 set rs60003_mq up

wtdriver6 set rs60002_mq up

wtdriver6 set somequeue up

Figure 172. showmq.shell

In addition to the shell, there are two other files involved. For information on
their use, refer to NetView for AIX documentation, including IBM NetView for AIX
Programmer ′s Reference, SC31-6239.

232 Examples of Using NetView for AIX

Application ″MQSeries_ITSO″
{

Action ″show_MQSeries_status″

{
Command ″xnmappmon -commandTitle \″MQSeries Queue Information\″

-cmd /usr/OV/raleigh/showMQSeries_Q_status

\″$OVwSelection1\″″ ;

MinSelected 1;
MaxSelected 1;

}
}

Figure 173. showMQSeries.reg Registration File

#!/bin/ksh
#--#
Shell to take the name of an IDNX card symbol and display
Object database information about it
#--#

print ″ MQSeries Status Information for $1 ″

print ″===″

print ″″

ovobjprint -s $1 | awk ′ / mqseries | MQSeries/ {print $3, $4, $5}′

print ″″

print ″===″

Figure 174. showMQSeries_Q_status

7.8 Execution Panels
The shell (see Figure 172 on page 232) will add a symbol to the Root submap.
First, the Root map has only the IP Internet symbol.

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 233

Figure 175. Root Submap Without MQSeries Symbol

Following the shell′s execution, a symbol has been added to the Root submap.

234 Examples of Using NetView for AIX

Figure 176. Root Submap After MQSeries Symbol Has Been Added

The added symbol has an associated submap. Clicking on the added symbol
ITSO_MQSeries will result in the following submap.

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 235

Figure 177. Submap Resulting from Clicking on ITSO_MQSeries

The submap for ITSO_MQSeries has two symbols connected together. See
Figure 172 on page 232 for how this was done. The approach used resulted in
the connection link being what is known in NetView for AIX terminology as a
Meta-Connection. Clicking on the connection brings forward a submap which
has had an executable symbol added to it by wtdriver6.

236 Examples of Using NetView for AIX

Figure 178. The Meta-Connection Submap

The executable symbol results in a shell being executed (see the registration file
in Figure 173 on page 233). The following panel is the result of this shell being
driven by the operator clicking on somequeue.

The information presented in the resulting panel is incomplete since we have not
yet written the code to obtain the information from MQSeries to be presented to
the user. That will be done in an upcoming project.

Refer once again to Figure 171 on page 224 for operands that can be used by
wtdriver/wteuiap6 to meet a variety of application needs.

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 237

Figure 179. Output of the Shell Driven by Executable Symbol

It might be desirable to have an MQSeries symbol on the same submap as an IP
symbol. The following command accomplishes that, as shown in the next figure.

wtdriver6 -m shogm1 -f rs60003 add rs60003_mq ap

238 Examples of Using NetView for AIX

Figure 180. Submap Containing Both IP and MQSeries Symbols

Following execution, looking at an MQSeries object in the NetView for AIX object
database, via the command:
/usr/OV/bin/ovobjprint -s rs60003_mq

results in:

OBJECTID SELECTION NAME
OBJECT: 1027

FIELD ID FIELD NAME FIELD VALUE
10 Selection Name ″rs60003_mq″
14 OVW Maps Exists 1
15 OVW Maps Managed 1
66 isSoftware TRUE
129 Software Status ″Unknown″
135 Some String ″IBM MQSeries.

Contact Bob Johnson of ITSO-Raleigh″

Having user information in the object database together with information from
NetView for AIX and the family of products is headed towards a common
repository of network and systems management information.

Stay tuned!

Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API 239

240 Examples of Using NetView for AIX

Appendix A. Open Topology MIB Reference

This appendix describes the elements of the Open Topology MIB and the
meaning of some of the more important fields.

A.1 The Open Topology MIB
The Open Topology MIB is located in /usr/OV/snmp_mibs/drafts/ibm-nv6ktopo.mib.

The data contained in this MIB is stored as tables, and the tables are divided up
into groups. Groups contain all tables and variables that describe all the
resources of a single class.

The tables defined in the MIB are divided into groups and tables as shown in
Table 19.

The NetView for AIX open topology MIB also defines a set of traps that can be
used to communicate topology and status changes to the network management
applications. The traps can be used to tell the management applications the
following information:

• Newly discovered vertices or connections
• Deletion of network resources
• Changes of resource status
• Changes in variable values

Table 20 on page 242 shows the names of the tables and the trap names that
can be used to manipulate them:

Table 19. Open Topology Groups and Tables

Group Tables

Vertex SAP
Vertex

Simple Connection Simple Connection
Underlying Connection

Arc Arc
Underlying Arc

Graph Graph
Members
Members Arcs
Attached Arcs
Addit ional Members
Additional Graphs

 Copyright IBM Corp. 1994 241

See A.2, “An Open Technology MIB Cross Reference” on page 243 for a
description of the contents of each of these tables, and the meaning of some of
the Open Topology status fields.

Table 20. List of Open Technology Traps

Table Name of the TRAP

Vertex newVertex
deletedVertex
vertexStateChange
vertexVariableChange

SAP newSAPTrap
deletedSAP

Simple Connection newSimpleConnection
deletedSimpleConnection
simpleConnectionStateChange
simpleConnectionVariableStateChange

Underlying Connection newUnderlyingConnection
deletedUnderlyingConnection

Arc newArc
deletedArc
arcStateChange
arcVariableChange

Underlying Arc newUnderlyingArc
deletedUnderlyingArc

Member Arc newMemberArc
deletedMemberArc

Members newMemberTrap
deletedMember

Additional Member Information newMemberInformation
memberInformationVariableChange

Additional Graph Information newAddit ionalGraphInformation
additionalGraphInformationVariableChange

242 Examples of Using NetView for AIX

A.2 An Open Technology MIB Cross Reference

A.2.1 Vertex Group: .1.3.6.1.4.1.2.5.3.1

A.2.1.1 Vertex Table: .1.3.6.1.4.1.2.5.3.1.1.1.x
The vertex table is used to represent all communicating entities in a topology.
There is one entry for each entity that an agent is aware of.

newVertex 1879048192 ′70000000′h
deletedVertex 1879048193 ′70000001′h
vertexStateChange 1879048194 ′70000002′h
vertexVariableChange 1879048195 ′70000003′h

 .1.3.6.1.4.1.2.5.3.1.1.1.1 integer vertexType other(1), invalid(2), vertex(3)
 .1.3.6.1.4.1.2.5.3.1.1.1.2 vertexprotocol vertexProtocol ** integer(vertex), .1.3.6.1.2.1.2.2.1.3.x(graph)
 .1.3.6.1.4.1.2.5.3.1.1.1.3 octetstring vertexName
 .1.3.6.1.4.1.2.5.3.1.1.1.4 integer vertexLabel
 .1.3.6.1.4.1.2.5.3.1.1.1.5 integer vertexMine
 .1.3.6.1.4.1.2.5.3.1.1.1.6 octetstring vertexLocation
 .1.3.6.1.4.1.2.5.3.1.1.1.7 objectidentifier vertexManagementExtension
 .1.3.6.1.4.1.2.5.3.1.1.1.8 octetstring vertexManagementAddr
 .1.3.6.1.4.1.2.5.3.1.1.1.9 objectidentifier vertexIcon
 .1.3.6.1.4.1.2.5.3.1.1.1.10 integer vertexOperationnalState
 .1.3.6.1.4.1.2.5.3.1.1.1.11 integer vertexUnknownStatus
 .1.3.6.1.4.1.2.5.3.1.1.1.12 integer vertexAvailabilityStatus
 .1.3.6.1.4.1.2.5.3.1.1.1.13 integer vertexAlarmStatus

A.2.1.2 SAP Table: .1.3.6.1.4.1.2.5.3.1.2.1.x
This table shows the mapping of vertices used and provides SAPs.

NewSAP 1879048196 ′70000004′h
deletedSAP 1879048197 ′70000005′h
SAPVariableChange 1879048198 ′70000006′h

 .1.3.6.1.4.1.2.5.3.1.2.1.1 integer sapType valid(1), invalid(2)
 .1.3.6.1.4.1.2.5.3.1.2.1.2 vertexProtocol sapVertexProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.1.2.1.3 octetstring sapVertexName
 .1.3.6.1.4.1.2.5.3.1.2.1.4 integer sapIndexId
 .1.3.6.1.4.1.2.5.3.1.2.1.5 integer sapServiceType using(1) providing(2)
 .1.3.6.1.4.1.2.5.3.1.2.1.6 vertexProtocol sapProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.1.2.1.7 octetstring sapAddress

Appendix A. Open Topology MIB Reference 243

A.2.2 Simple Connection Group: .1.3.6.1.4.1.2.5.3.2

A.2.2.1 Simple Connection Table: .1.3.6.1.4.1.2.5.3.2.1.1.x
This table contains one entry for each connection with an endpoint known about
by an agent. It contains information about each connection from the perspective
of an endpoint.

newSimpleConnection 1879048199 ′70000007′h
 deletedSimpleConnection 1879048200 ′70000008′h
 simpleConnStateChange 1879048201 ′70000009′h

simpleConnVariableChange 1879048202 ′7000000A′ h

 .1.3.6.1.4.1.2.5.3.2.1.1.1 integer simpleConnType other(1), invalid(2), simpleConnection(3)
 .1.3.6.1.4.1.2.5.3.2.1.1.3 vertexProtocol localEndpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.2.1.1.4 octetstring localEndpointName
 .1.3.6.1.4.1.2.5.3.2.1.1.5 integer simpleConnIndexId
 .1.3.6.1.4.1.2.5.3.2.1.1.6 octetstring simpleConnName
 .1.3.6.1.4.1.2.5.3.2.1.1.8 vertexProtocol connectionPartnerProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.2.1.1.9 integer connectionPartnerName
 .1.3.6.1.4.1.2.5.3.2.1.1.11 octetstring simpleConnManagementExtension
 .1.3.6.1.4.1.2.5.3.2.1.1.12 octetstring simpleConnManagementAddress

.1.3.6.1.4.1.2.5.3.2.1.1.13 objectidentifier simpleConnManagementIcon

.1.3.6.1.4.1.2.5.3.2.1.1.14 integer simpleConnOperationnalState

.1.3.6.1.4.1.2.5.3.2.1.1.15 integer simpleConnUnknownStatus

.1.3.6.1.4.1.2.5.3.2.1.1.16 integer simpleConnAvailabilityStatus

.1.3.6.1.4.1.2.5.3.2.1.1.17 integer simpleConnAlarmStatus

A.2.2.2 Underlying Connection Table: .1.3.6.1.4.1.2.5.3.2.2.1.x
This table provides the mapping from using simple connection to the underlying
connection. There is one entry for each simple connection used by another
simple connection.

newUnderlyingConnection 1879048203 ′7000000B′ h
 deletedUnderlyingConnection 1879048204 ′7000000C′ h

 .1.3.6.1.4.1.2.5.3.2.2.1.1 integer ulcType valid(1), invalid(2)
 .1.3.6.1.4.1.2.5.3.2.2.1.2 vertexProtocol ulcEndpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.2.2.1.3 octetstring ulcEndpointName
 .1.3.6.1.4.1.2.5.3.2.2.1.4 integer ulcEndpointId
 .1.3.6.1.4.1.2.5.3.2.2.1.5 integer ulcIndexId
 .1.3.6.1.4.1.2.5.3.2.2.1.6 integer underlyngConnectionKind
 .1.3.6.1.4.1.2.5.3.2.2.1.7 vertexProtocol uconnEndpointprotocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.2.2.1.8 octetstring uconnEndpointName
 .1.3.6.1.4.1.2.5.3.2.2.1.9 integer uconnSimpleConnId
 .1.3.6.1.4.1.2.5.3.2.2.1.10 integer nextSerialUlcIndexId

244 Examples of Using NetView for AIX

A.2.3 Arc Group: .1.3.6.1.4.1.2.5.3.3

A.2.3.1 Arc Table: .1.3.6.1.4.1.2.5.3.3.1.1.x
The arc table contains one entry for every arc represented by an agent. An
agent is not required to support this table. The arc table must be supported if the
agent supports the graph group.

newSimpleArc 1879048206 ′7000000E′ h
deletedArc 1879048207 ′7000000F′ h
arcStateChange 1879048208 ′70000010′h
arcVariableChange 1879048209 ′70000011′h

 .1.3.6.1.4.1.2.5.3.3.1.1.1 integer arcType other(1), invalid(2), arc(3)
 .1.3.6.1.4.1.2.5.3.3.1.1.2 octetstring arcLabel
 .1.3.6.1.4.1.2.5.3.3.1.1.4 vertexProtocol aEndpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.3.1.1.5 octetstring aEndpointName
 .1.3.6.1.4.1.2.5.3.3.1.1.7 vertexProtocol zEndpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.3.1.1.8 octetstring aEndpointName
 .1.3.6.1.4.1.2.5.3.3.1.1.9 integer arcIndexId --> maArcIndexId in Members Arc Table (.9)
 .1.3.6.1.4.1.2.5.3.3.1.1.10 integer aDetailsIndexId
 .1.3.6.1.4.1.2.5.3.3.1.1.11 integer zDetailsIndexId

.1.3.6.1.4.1.2.5.3.3.1.1.12 objectidentifier arcManagementExtension

.1.3.6.1.4.1.2.5.3.3.1.1.13 octetstring arcManagementAddr

.1.3.6.1.4.1.2.5.3.3.1.1.14 objectidentifier arcIcon

.1.3.6.1.4.1.2.5.3.3.1.1.15 integer arcOperationnalState

.1.3.6.1.4.1.2.5.3.3.1.1.16 integer arcUnknownStatus

.1.3.6.1.4.1.2.5.3.3.1.1.17 integer arcAvailabilityStatus

.1.3.6.1.4.1.2.5.3.3.1.1.18 integer arcAlarmStatus

A.2.3.2 Underlying Arc Table: .1.3.6.1.4.1.2.5.3.3.2.1.x
This table provides the mapping from the using arc to the underlying arc. It also
depicts an ordered list of serial underlying arcs.

newUnderlyingArc 1879048210 ′70000012′h
 deletedUnderlyingArc 1879048211 ′70000013′h

 .1.3.6.1.4.1.2.5.3.3.2.1.1 integer ulaType valid(1), invalid(2)
 .1.3.6.1.4.1.2.5.3.3.2.1.2 vertexProtocol ulaAendpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.3.2.1.3 octetstring ulaAendpointName
 .1.3.6.1.4.1.2.5.3.3.2.1.4 vertexProtocol ulaZendpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.3.2.1.5 octetstring ulaZendpointName
 .1.3.6.1.4.1.2.5.3.3.2.1.6 integer ulaArcIndexId
 .1.3.6.1.4.1.2.5.3.3.2.1.7 integer ulaIndexId
 .1.3.6.1.4.1.2.5.3.3.2.1.8 integer underlyingArckind serial(1),parrallel(2)
 .1.3.6.1.4.1.2.5.3.3.2.1.9 vertexProtocol uconnAendpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.3.2.1.10 octetstring uconnAendpointName

.1.3.6.1.4.1.2.5.3.3.2.1.11 vertexProtocol uconnZendpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)

.1.3.6.1.4.1.2.5.3.3.2.1.12 octetstring uconnZendpointName

.1.3.6.1.4.1.2.5.3.3.2.1.13 integer uconnArcIndexId

.1.3.6.1.4.1.2.5.3.3.2.1.14 integer nextSerialUlaIndexId

Appendix A. Open Topology MIB Reference 245

A.2.4 Graph Group: .1.3.6.1.4.1.2.5.3.4

A.2.4.1 Graph Table: .1.3.6.1.4.1.2.5.3.4.1.1.x
There is one entry in the graph table for each graph defined by an agent.

newGraph 1879048213 ′70000015′h
deletedGraph 1879048214 ′70000016′h
graphVariableChange 1879048215 ′70000017′h

 .1.3.6.1.4.1.2.5.3.4.1.1.1 integer graphType graph(3),box(4)
 .1.3.6.1.4.1.2.5.3.4.1.1.2 objectidentifier graphProtocol
 .1.3.6.1.4.1.2.5.3.4.1.1.3 octetstring graphName
 .1.3.6.1.4.1.2.5.3.4.1.1.4 integer LayoutAlgorithm none(1), userdefined(2), pointToPoint(3)

bus(4), star(5), spoked-ring(6), rowcol(7)
pointToPoint-ring(8), tree(9)

 .1.3.6.1.4.1.2.5.3.4.1.1.5 integer userDefinedLayout
 .1.3.6.1.4.1.2.5.3.4.1.1.6 octetstring graphLocation
 .1.3.6.1.4.1.2.5.3.4.1.1.7 octetstring backgroundMap
 .1.3.6.1.4.1.2.5.3.4.1.1.8 objectidentifier graphManagementExtension
 .1.3.6.1.4.1.2.5.3.4.1.1.9 octetstring graphManagementAddr

.1.3.6.1.4.1.2.5.3.4.1.1.10 objectidentifier graphIcon

.1.3.6.1.4.1.2.5.3.4.1.1.11 integer isRoot true(1),false(2)

.1.3.6.1.4.1.2.5.3.4.1.1.12 octetstring graphLabel

A.2.4.2 Members Arc Table: .1.3.6.1.4.1.2.5.3.4.2.1.x
This table shows the member arcs of graphs in the graph table.

newMemberArc 1879048216 ′70000018′h
deletedMemberArc 1879048217 ′70000019′h
memberArcVariableChange 1879048218 ′7000001A′ h

 .1.3.6.1.4.1.2.5.3.4.2.1.1 integer maType valid(1), invalid(2)
 .1.3.6.1.4.1.2.5.3.4.2.1.2 objectidentifier maGraphProtocol
 .1.3.6.1.4.1.2.5.3.4.2.1.3 octetstring maGraphName
 .1.3.6.1.4.1.2.5.3.4.2.1.4 integer maIndexId
 .1.3.6.1.4.1.2.5.3.4.2.1.5 vertexProtocol maAendpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.4.2.1.6 octetstring maAendpointName
 .1.3.6.1.4.1.2.5.3.4.2.1.7 vertexProtocol maZendpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.4.2.1.8 octetstring maZendpointName
 .1.3.6.1.4.1.2.5.3.4.2.1.9 integer maArcIndexId --> arcindexid in arc table(.9)

246 Examples of Using NetView for AIX

A.2.4.3 Graph Attached Arcs Table: .1.3.6.1.4.1.2.5.3.4.3.1.x
This table shows the correlation of attached arcs to the graph each is attached
to. Each arc in this table has one end point within a graph in the graph table.

newGraphAttachedArc 1879048219 ′7000001B′ h
deletedGraphAttachedArc 1879048220 ′7000001C′ h
graphAttachedArcVariableChanghe 1879048221 ′7000001D′ h

 .1.3.6.1.4.1.2.5.3.4.3.1.1 integer aaType valid(1), invalid(2)
 .1.3.6.1.4.1.2.5.3.4.3.1.2 objectidentifier aaGraphProtocol
 .1.3.6.1.4.1.2.5.3.4.3.1.3 octetstring aaGraphName
 .1.3.6.1.4.1.2.5.3.4.3.1.4 integer aaIndexId
 .1.3.6.1.4.1.2.5.3.4.3.1.5 vertexProtocol aaAendpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.4.3.1.6 octetstring aaAendpointName
 .1.3.6.1.4.1.2.5.3.4.3.1.7 vertexProtocol aaZendpointProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.4.3.1.8 octetstring aaZendpointName
 .1.3.6.1.4.1.2.5.3.4.3.1.9 integer aaArcIndexId

A.2.4.4 Members Table: .1.3.6.1.4.1.2.5.3.4.4.1.x
This table has one entry for every member of a graph in the graph table.

newMemberTrap 1879048222 ′7000001E′ h
deletedMemberTrap 1879048223 ′7000001D′ h
memberVariableChange 1879048224 ′70000020′h

 .1.3.6.1.4.1.2.5.3.4.4.1.1 integer memberType valid(1), invalid(2)
 .1.3.6.1.4.1.2.5.3.4.4.1.2 objectidentifier memberProtocol
 .1.3.6.1.4.1.2.5.3.4.4.1.3 octetstring memberName
 .1.3.6.1.4.1.2.5.3.4.4.1.4 integer memberIndexId
 .1.3.6.1.4.1.2.5.3.4.4.1.6 vertexProtocol memberComponentProtocol ** vertex(integer), graph(.1.3.6.1.2.1.2.2.1.3.x)
 .1.3.6.1.4.1.2.5.3.4.4.1.7 octetstring memberComponentName

A.2.4.5 Additional Members Information Table:
.1.3.6.1.4.1.2.5.3.4.5.1.x
This table contains additional information that is specific to a member of graph
with no layout algorithm.

newMemberInformation 1879048225 ′70000021′h
memberInformationVariableChange 1879048226 ′70000022′h

 .1.3.6.1.4.1.2.5.3.4.5.1.1 integer amemberType valid(1), invalid(2)
 .1.3.6.1.4.1.2.5.3.4.5.1.2 objectidentifier amemberProtocol
 .1.3.6.1.4.1.2.5.3.4.5.1.3 octetstring amemberName
 .1.3.6.1.4.1.2.5.3.4.5.1.4 integer amemberIndexId
 .1.3.6.1.4.1.2.5.3.4.5.1.5 integer xCoordinate
 .1.3.6.1.4.1.2.5.3.4.5.1.6 integer yCoordinate

Appendix A. Open Topology MIB Reference 247

A.2.4.6 Additional Graph Information Table: .1.3.6.1.4.1.2.5.3.4.6.1.x
This table contains additional information about a graph. It contains entries only
for graphs with additional information. The table should include only one row
with a non-zero value of graphRootIndexId, the first row with a valid
graphrootIndexId will be the hub or center vertex of the graph.

newAdditionalGraphInformation 1879048227 ′70000023′h
additionalgraphInformationVariableChange 1879048228 ′70000024′h

 .1.3.6.1.4.1.2.5.3.4.6.1.1 integer addGraphType valid(1), invalid(2)
 .1.3.6.1.4.1.2.5.3.4.6.1.2 objectidentifier addGraphProtocol
 .1.3.6.1.4.1.2.5.3.4.6.1.3 octetstring addGraphName
 .1.3.6.1.4.1.2.5.3.4.6.1.4 integer addGraphIndexId
 .1.3.6.1.4.1.2.5.3.4.6.1.5 integer graphRootIndexId
 .1.3.6.1.4.1.2.5.3.4.6.1.6 octetstring graphDesc1
 .1.3.6.1.4.1.2.5.3.4.6.1.7 integer graphDescrX
 .1.3.6.1.4.1.2.5.3.4.6.1.8 integer graphDescrY

A.3 State Information
State and status information is defined by the ISO 10164-2, State management.
This information is summarized below.

A.3.1 Operational State
The operational state can be:

Enabled. The device is available for use

Disabled. The device is unavailable for use.

A.3.2 Status Information
In addition to the operational state, we have three status fields available for use.

Unknown status The state of the resource is unknown, as the agent, is not able
to advise us of its state.

Availability status This could be one of the following:

• In test
• Failed
• Power off
• Off line
• Off duty
• Dependency
• Degraded
• Not installed

Alarm status This provides further information about alarms issued for the
resource, and the actions taken to resolve them.

• Under repair
• Critical
• Major
• Minor
• Alarm outstanding

248 Examples of Using NetView for AIX

A.3.3 Mapping States and Status to NetView for AIX Displays
Table 21 shows the relationship between the states of the objects and the way
that NetView for AIX displays this information to the user.

Table 21. Resource to NetView for AIX Status Mapping Table

Operational Status Unknown Status Availability Status Alarm Status NetView/6000
Status

any true any crit ical critical

any true any other than critical unknown

enabled false empty set any normal

any false off duty any normal

disabled false not installed any unmanaged

disabled false off l ine any marginal

disabled false dependency any critical

enabled false degraded crit ical critical

enabled false degraded other than critical marginal

disabled false failed any critical

disabled false power off any critical

enabled false in test any marginal

So, to get the status change information to the NetView for AIX operator, we
have to consider four MIB variables, in each of the objects for which gtmd holds
status. Table 22 shows the possible numeric values for these fields. Notice that
some of these fields can have more than one status bit set, in which case you
have to sum the integer values.

Table 22. Status Field Integer Values

Operational Status Unknown Status Availability Status Alarm Status Integer Value

disabled true inTest underRepair 1

enabled false failed crit ical 2

powerOff major 4

offLine minor 8

offDuty alarmOutstanding 16

dependency 32

degraded 64

notinstalled 128

We can now correlate the information in Table 21 with the information in
Table 22 to find out which field values will have to be set in order to affect the
status of the displayed NetView for AIX resource.

Status information can be maintained in the following tables:

• Vertex
• Simple connection
• Arc

Appendix A. Open Topology MIB Reference 249

250 Examples of Using NetView for AIX

Appendix B. Automatic Seed File Example Programs

This appendix contains sample automatic seed file programs.

Application ″Backup″ {

Description {
″Configuration and Control″ ,
″For Automated Backup″

}
Version ″V3R1″ ;

Copyright {
″Licensed Program Product:″ ,
″ NetView for AIX″ ,
″ (C) COPYRIGHT International Business Machines Corp. 1994″ ,
″ All Rights Reserved″ ,
″US Government Users Restricted Rights - Use, duplication,″ ,
″or disclosure restricted by GSA ADP Schedule Contract with″ ,
″IBM Corp. and its licensors.″ ,
″″

}
HelpDirectory ″Distman″ ;
Command -Shared -Initial -Restart ″${BackupDir:-/usr/OV/bin}/backup″ ;

MenuBar ″Administer″ {
″Backup″ _B f.menu ″backup″ ;

}
Menu ″backup″ {

″Backup Configuration...″ _B f.action ″backupConfig″ ;
″Read Seedfile″ _R f.action ″backupReadSeed″ ;
″Build Seedfile″ _R f.action ″backupBuildSeed″ ;

}
Action ″backupConfig″ {

}
Action ″backupReadSeed″ {

Command ″${aixterm:-/usr/bin/X11/aixterm} -fg black -bg grey
-T \″Load\ Seed\ File\″ -e /u/paul/progs/req_seed.ksh
>/dev/null 2>&1″ ;

}
Action ″backupBuildSeed″ {

MinSelected 0;
Command ″${aixterm:-/usr/bin/X11/aixterm} -fg black -bg grey

-T \″Build\ Seed\ File\″ -e /u/paul/progs/build_seed.ksh
>/dev/null 2>&1″ ;

}
}

Figure 181. Backup Registration File (/usr/OV/registration/C/backup)

 Copyright IBM Corp. 1994 251

#!/bin/ksh
Script to build the seed file from NetView/60000
Input from keyboard - Manager Node and Backup Node
The contents of the seed file are built from the NetView/6000 Map
SEED=/u/paul/seed/seed_file

echo ″Do you wish to (c)reate or (a)ppend to the Seedfile: \c″; read ACT
if [″$ACT″ = ″q″]
then

exit 0
else

if [-z ″$ACT″]
then

echo ″Re-enter value″
sleep 1; exec $0

else
if [″$ACT″ != ″c″] && [″$ACT″ != ″a″]
then

echo ″Re-enter value″
sleep 1; exec $0
fi

fi
fi

echo ″Enter Nodename for Manager (q) to Quit:\c ″; read MAN
if [″$MAN″ = ″q″]
then

exit 0
else

if [-z ″$MAN″]
then

echo ″Re-enter value″
sleep 1; exec $0

fi
fi
echo ″Enter Nodename for Backup Manager (q) to Quit:\c ″; read BAK
if [″$BAK″ = ″q″]
then

exit 0
else

if [-z ″$BAK″]
then

echo ″Re-enter value″
sleep 1; exec $0

fi
fi
if [″$ACT″ = ″c″]
then

/u/paul/progs/build_seedfile $MAN $BAK > $SEED
else

/u/paul/progs/build_seedfile $MAN $BAK >> $SEED
fi
echo ″Seed file: $SEED has been updated; press <RETURN> to continue\c ″; read
exit 0

Figure 182. build_seed.ksh

252 Examples of Using NetView for AIX

#!/usr/bin/ksh
echo -n ″Enter seedfile or (q) to quit : ″
read fnseed
if [″$fnseed″ = ″q″]
then

exit 0
fi

if [-a ″$fnseed″]
then

echo -n ″reading seedfile...$fnseed″
/usr/OV/bin/backup -s $fnseed &
echo -n ″Seed File process completed. Check output on screen″
echo -n ″Press <RETURN> to continue \c″; read
exit 0

else
echo ″File $fnseed does NOT exists. Press <RETURN> to re-enter: \c″; read

fi

exec $0

Figure 183. req_seed.ksh

Appendix B. Automatic Seed File Example Programs 253

/*
 * Program to create and append the seed file
 * for Management Takeover.
 *
 * Author Paul Fearn
 * 24/08/94
 *
 * To Compile:
 * cc -o build_seedfile build_seedfile.c -lovw -lov -lntl
 */

#include <stdio.h>
#include <stdlib.h>

#include <OV/ovw.h>
#include ″ovw_print.h″

void usage();
void printMap(char *man);

main(int argc, char *argv[])
{

extern int optind, opterr;
extern char *optarg;
int c;
OVwBoolean errflag = FALSE;
OVwBoolean verbose = FALSE;
OVwBoolean printfields = FALSE;

int i, rc;
char *label;
char *SelectName;
OVwMapInfo *map;
OVwObjectIdList *op;
OVwObjectId *lp;

if (OVwInit() < 0) {
fprintf(stderr, ″%s\n″ , OVwErrorMsg(OVwError()));
exit(1);

}

map = OVwGetMapInfo();
op = OVwGetSelections(map, NULL);

for (i=0, lp = op->object_ids; i<op->count; i++, lp++)
{

SelectName=OVwDbObjectIdToSelectionName(*lp);
printf(″\″%s\″ \″%s\″ \″%s\″\n″ , argv[1], SelectName, argv[2]);

}

OVwDbFreeObjectIdList(op);
OVwDone();

}

Figure 184. ′C′ program build_seedfile.c

254 Examples of Using NetView for AIX

Appendix C. Open Topology Program Samples

This appendix contains the ″C″ language and shell script samples for driving the
Open Topology functions of NetView for AIX that were developed during the
project. The programs are:

wtotapi1 This is a C program that uses the NetView for AIX Open Topology
API. It may be used to add network objects, connect them together,
set status and create SAPs.

wtgtm This is a shell script that generates SNMP traps which conform to the
Open Topology MIB. It may be used to add and delete network
objects, connect them together, set status and create SAPs. Because
it uses the trap interface, wtgtm is compatible with AIX NetView/6000
V2R1 as well as NetView for AIX.

C.1 Program Listing for wtotapi1.c

/***/
/***/
/* Sample Program to drive the NV6000 V3 gtm API */
/* */
/* AUTHOR Rob Macgregor */
/***/
/***/

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <wordexp.h>
#include <nvot.h>
#include <OV/ovw_obj.h>
#define MAX_NAME_LEN 48

typedef enum gtm_cmd_id {
GTM_SET_PROTOCOL, /* Set current protocol ID */
GTM_SET_PREFIX, /* Set prefix of protocol oid*/
GTM_SET_PARENT, /* Set parent graph */
GTM_ADD_OBJECT, /* Add something to network */
GTM_DEL_OBJECT, /* Remove something */
GTM_SET_OBJECT, /* Set variable for object */
GTM_QUIT, /* Set variable for object */
GTM_ADD_GRAPH, /* Add graph command */
GTM_ADD_BOX, /* Add box graph command */
GTM_ADD_VERTEX, /* Add vertex */
GTM_ADD_ARC, /* Add arc */
GTM_ADD_SAP /* Add sap */

} gtm_cmd_id;

Figure 185 (Part 1 of 9). wtotapi1.c Program Listing

 Copyright IBM Corp. 1994 255

typedef enum usage_code {
GENERAL_USAGE, /* General usage text */
SET_PROT_ERR, /* Invalid set protocol cmd */
PROT_NOT_SET, /* Protocol not yet set */
ADD_GENERAL, /* Help on the ADD command */
ADD_GRAPH_FORMAT, /* Invalid submap format */
ADD_VERTEX_FORMAT, /* Invalid add vertex command*/
ADD_ARC_FORMAT, /* Invalid add arc command */
ADD_SAP_FORMAT, /* Invalid add sap command */
SET_VERTX_FORMAT /* Invalid set status command*/

 } usage_code;

/* Global variables - current protocol, current graph name and graph protcol */

char *oid_prefix = ″ 1 . 3 . 6 . 1 . 2 . 1 . 2 . 2 . 1 . 3 . ″ ;
char current_prot_char[40] ;
nvotGraphProtocolType current_prot_oid = current_prot_char ;
nvotVertexProtocolType current_prot_nbr = 0 ;
char current_graph[32] ;
char current_graph_prot[40] ;
nvotGraphType current_graph_type ;

int ep_to_arc_binding[] = {0,0,
ARC_GRAPH_GRAPH_NAME_BINDING,
ARC_VERTEX_GRAPH_NAME_BINDING,
ARC_GRAPH_VERTEX_NAME_BINDING,
ARC_VERTEX_VERTEX_NAME_BINDING} ;

#include ″wtothelp.c″ /* ″usage()″ procedure */

/* Read /usr/OV/conf/C/oid_to_sym and return OID for given Icon name */
int sym_to_oid(char * icon, char * oid)
{
FILE *fid ;
char instring[120] ;
char *mapping_string ;
char *end_ptr ;
char *dotted_decimal_oid ;
char *sym_name ;
char *oid_to_sym_file = ″ / usr/OV/conf/C/oid_to_sym″ ;

if ((fid = fopen(oid_to_sym_file, ″r″)) == 0)
{
printf(″Error reading oid_to_sym file″) ;
exit(-1) ;

}
 while(fgets(instring, 120, fid) != 0)

{
if (strspn(instring, ″#″) == 0)
{
mapping_string = strtok(instring, ″#″) ;
/* Strip off trailing blanks and tabs */
for (

end_ptr = mapping_string + strlen(mapping_string) -1 ;
(strcmp(end_ptr, ″ ″) == 0) | | (strcmp(end_ptr, ″\t″) == 0) ;
strcpy(end_ptr, 0x00), end_ptr--

) ;

if (strlen(mapping_string) > 1)
{
dotted_decimal_oid = strtok(mapping_string, ″ : ″) ;
sym_name = strtok(NULL, ″\n″) ;
if(strcmp(sym_name, icon) == 0)
{

strcpy(oid, dotted_decimal_oid) ;
return 0 ;

}
}

}
}

 printf(″No entry for %s found in %s. Try again\n″ , icon, oid_to_sym_file) ;
 return -1 ;
}

Figure 185 (Part 2 of 9). wtotapi1.c Program Listing

256 Examples of Using NetView for AIX

/* Return number of words in input string */
int WORDS(char *cmd_string)
{
 wordexp_t string_structure ;
 wordexp(cmd_string, &string_structure, 0) ;
 return string_structure.we_wordc ;
}

/* Return nth word in input string */
char * WORD(char *cmd_string, int wordpos)
{
 wordexp_t string_structure ;
 wordexp(cmd_string, &string_structure, 0) ;
 return string_structure.we_wordv[wordpos - 1] ;
}

/* Routine to qualify what command was issued */
int cmd_to_table(char *cmd)
{
 struct cmdtable {

char *c_name;
int c_desc;
} cmdtable[] = {

{ ″protocol″ , GTM_SET_PROTOCOL },
{ ″prot″ , GTM_SET_PROTOCOL },
{ ″parent″ , GTM_SET_PARENT },
{ ″focus″ , GTM_SET_PARENT },
{ ″prefix″ , GTM_SET_PREFIX },
{ ″add″ , GTM_ADD_OBJECT },
{ ″a″ , GTM_ADD_OBJECT },
{ ″set″ , GTM_SET_OBJECT },
{ ″s″ , GTM_SET_OBJECT },
{ ″graph″ , GTM_ADD_GRAPH },
{ ″vertex″ , GTM_ADD_VERTEX },
{ ″box″ , GTM_ADD_BOX },
{ ″arc″ , GTM_ADD_ARC },
{ ″sap″ , GTM_ADD_SAP },
{ NULL, EOF }

 } ;
 int i ;
 for(i=0; cmdtable[i].c_name != NULL; i++)

if(!strcmp(cmdtable[i].c_name, cmd))
return(cmdtable[i].c_desc);

 return(EOF) ;
}

/* Routine to qualify what status is required */
int char_to_status(char *char_status)
{
 struct status_tbl {

char *s_name;
int s_desc;
} status_tbl[] = {

{ ″up″ , STATUS_NORMAL },
{ ″down″ , STATUS_CRITICAL },
{ ″marginal″ , STATUS_MARGINAL },
{ ″marg″ , STATUS_MARGINAL },
{ ″unknown″ , STATUS_UNKNOWN },
{ ″unk″ , STATUS_UNKNOWN },
{ NULL, EOF }

 } ;
 int i ;
 for(i=0; status_tbl[i].s_name != NULL; i++)

if(!strcmp(status_tbl[i].s_name, char_status))
return(status_tbl[i].s_desc);

 printf(″wtotapi1: Invalid status, options are: up, down, marginal, unknown\n″) ;
 return(EOF) ;
}

/* Set the protocol number we are currently working with */
void set_cur_protocol(char * args)
{
 if((current_prot_nbr = atoi(args)) == NULL)

{
usage(SET_PROT_ERR) ;
return ;

}

Figure 185 (Part 3 of 9). wtotapi1.c Program Listing

Appendix C. Open Topology Program Samples 257

 strcpy(current_prot_oid,oid_prefix) ;
 strcat(current_prot_oid, args) ;
 printf(″Current protocol now set to %d\n″ , current_prot_nbr) ;
 printf(″The OID for this protocol is %s\n″ , current_prot_oid) ;
 return ;
}
/* Set the graph. All ″add″s subsequently will be members of the

graph defined in here */
void set_cur_graph(char *graph_name)
{

/* We must have set a value for current protocol */
if (current_prot_nbr == 0)
{

usage(PROT_NOT_SET) ;
return ;

}
/* We want to know if it exists, and whether it is a box or graph-graph*/
nvotGetVerticesInGraph(current_prot_oid, graph_name) ;
if (nvotGetError() == NVOT_SUCCESS) current_graph_type = GRAPH ;
else {

nvotGetVerticesInBox(current_prot_oid, graph_name) ;
if (nvotGetError() == NVOT_SUCCESS) current_graph_type = BOX ;
else {

printf (″%s is not a box-graph or graph-graph in protocol %d\n″ ,
graph_name, current_prot_nbr) ;

return ;
}

}

strcpy(current_graph, graph_name) ;
strcpy(current_graph_prot, current_prot_oid) ;
printf(″Objects added from now on will be members of %s\n″ , current_graph) ;
printf(″Protocol OID is: %s\n″ , current_graph_prot) ;
return ;

}

/* Convert layout character to nvotLayout value */
nvotLayoutType char_to_layout(char * layout_string)
{
 struct layout_tbl{

char *l_name;
nvotLayoutType l_type;

 } layout_tbl[] = {

{ ″none″ , NONE_LAYOUT },
{ ″p2p″ , POINT_TO_POINT_LAYOUT },
{ ″bus″ , BUS_LAYOUT },
{ ″star″ , STAR_LAYOUT },
{ ″ring″ , SPOKED_RING_LAYOUT },
{ ″rowcol″ , ROWCOL_LAYOUT },
{ ″p2pring″ , POINT_TO_POINT_RING_LAYOUT },
{ ″tree″ , TREE_LAYOUT },
{ NULL, NONE_LAYOUT }

 };
 int i ;
 for(i=0; layout_tbl[i].l_name != NULL; i++)

if(!strcmp(layout_tbl[i].l_name, layout_string))
return(layout_tbl[i].l_type);

 printf(″Unknown layout type - NONE_LAYOUT will be used\n″) ;
 return(NONE_LAYOUT) ;
}

/* Add graph to Root map */
void add_root_graph(char *args)
{
 nvotReturnCode retc ;
 char icon_oid[40] ;
 char graph_name[MAX_NAME_LEN] ;
 char graph_icon[30] ;
 char graph_layout_c[10] ;
 nvotLayoutType graph_layout ;
 nvotOctetString graph_details ;
 OVwObjectId objid ;
 strcpy(graph_name, WORD(args, 1)) ;
 strcpy(graph_icon, WORD(args, 2)) ;
 strcpy(graph_layout_c, WORD(args, 3)) ;
 printf(″About to add graph %s to Root submap\n″ , graph_name) ;
 if (sym_to_oid(graph_icon, &icon_oid) != 0)

return ;

Figure 185 (Part 4 of 9). wtotapi1.c Program Listing

258 Examples of Using NetView for AIX

 graph_layout = char_to_layout(graph_layout_c) ;
 objid = nvotCreateRootGraph(

current_prot_oid,
&graph_name,
graph_layout,
″ ″ ,
&icon_oid,
&graph_name,
&graph_details) ;

 printf(″wtotapi1: %s\n″ , nvotGetErrorMsg(nvotGetError())) ;
 return ;
}
/* Add graph graph */
void add_graph_graph(args)
{
 nvotReturnCode retc ;
 char icon_oid[40] ;
 char graph_name[MAX_NAME_LEN] ;
 char graph_icon[30] ;
 char graph_layout_c[10] ;
 nvotLayoutType graph_layout ;
 nvotOctetString graph_details ;
 OVwObjectId objid ;
 strcpy(graph_name, WORD(args, 1)) ;
 strcpy(graph_icon, WORD(args, 2)) ;
 strcpy(graph_layout_c, WORD(args, 3)) ;
 printf(″About to add graph %s to submap %s\n″ , graph_name, current_graph) ;
 if (sym_to_oid(graph_icon, &icon_oid) != 0)

return ;
 graph_layout = char_to_layout(graph_layout_c) ;
 objid = nvotCreateGraphInGraph(

¤t_graph_prot,
¤t_graph,
current_prot_oid,
&graph_name,
graph_layout,
″ ″ ,
&icon_oid,
&graph_name,
&graph_details) ;

 printf(″wtotapi1: %s\n″ , nvotGetErrorMsg(nvotGetError())) ;
 return ;
}

/* Add box graph */
void add_box_graph(args)
{
 nvotReturnCode retc ;
 char icon_oid[40] ;
 char graph_name[MAX_NAME_LEN] ;
 char graph_icon[30] ;
 char graph_layout_c[10] ;
 nvotLayoutType graph_layout ;
 nvotOctetString graph_details ;
 OVwObjectId objid ;
 strcpy(graph_name, WORD(args, 1)) ;
 strcpy(graph_icon, WORD(args, 2)) ;
 strcpy(graph_layout_c, WORD(args, 3)) ;
 printf(″About to add boxgraph %s to submap %s\n″ , graph_name, current_graph) ;
 if (sym_to_oid(graph_icon, &icon_oid) != 0)

return ;
 graph_layout = char_to_layout(graph_layout_c) ;
 objid = nvotCreateBoxInGraph(

¤t_graph_prot,
¤t_graph,
current_prot_oid,
&graph_name,
graph_layout,
″ ″ ,
&icon_oid,
&graph_name,
&graph_details) ;

 printf(″wtotapi1: %s\n″ , nvotGetErrorMsg(nvotGetError())) ;
 return ;
}

Figure 185 (Part 5 of 9). wtotapi1.c Program Listing

Appendix C. Open Topology Program Samples 259

/* Add vertex */
void add_vertex(args)
{
 nvotReturnCode retc ;
 char icon_oid[40] ;
 char vertex_name[MAX_NAME_LEN] ;
 char vertex_icon[30] ;
 nvotOctetString vertex_details ;
 OVwObjectId objid ;
 strcpy(vertex_name, WORD(args, 1)) ;
 strcpy(vertex_icon, WORD(args, 2)) ;
 printf(″About to add vertex %s to graph %s\n″ , vertex_name, current_graph) ;
 if (sym_to_oid(vertex_icon, &icon_oid) != 0)

return ;
 if(current_graph_type == BOX)

objid = nvotCreateVertexInBox(
¤t_graph_prot,
¤t_graph,
current_prot_nbr,
&vertex_name,
&icon_oid,
&vertex_name,
&vertex_details,
STATUS_NORMAL) ;

 else objid = nvotCreateVertexInGraph(
¤t_graph_prot,
¤t_graph,
current_prot_nbr,
&vertex_name,
&icon_oid,
&vertex_name,
&vertex_details,
STATUS_NORMAL) ;

 printf(″wtotapi1: %s\n″ , nvotGetErrorMsg(nvotGetError())) ;
 return ;
}

/* Add an arc */
void add_arc(char * args)
{
 nvotReturnCode retc ;
 char end_pt_a[MAX_NAME_LEN] ;
 char end_pt_z[MAX_NAME_LEN] ;
 char arcid_char[4] ;
 int arcid = 0 ;
 int end_type_a ;
 int end_type_z ;
 OVwObjectId objid ;
 nvotProtocolType end_prot_a ;
 nvotProtocolType end_prot_z ;

 strcpy(&end_pt_a, WORD(args, 1)) ;
 strcpy(&end_pt_z, WORD(args, 2)) ;

/* the end point may be vertices or graphs. Test to see which*/
 nvotGetVerticesInBox(current_prot_oid, end_pt_a) ;
 if(nvotGetError() == NVOT_SUCCESS)

{
end_type_a = 0 ;
end_prot_a.graphProtocol = current_prot_oid ;

}
else

{
end_type_a = 1 ;
end_prot_a.vertexProtocol = current_prot_nbr ;

}

 nvotGetVerticesInBox(current_prot_oid, end_pt_z) ;
 if(nvotGetError() == NVOT_SUCCESS)

{
end_type_z = 2 ;
end_prot_z.graphProtocol = current_prot_oid ;

}
else

{
end_type_z = 4 ;
end_prot_z.vertexProtocol = current_prot_nbr ;

}

Figure 185 (Part 6 of 9). wtotapi1.c Program Listing

260 Examples of Using NetView for AIX

if (current_graph_type == GRAPH)
{

objid = nvotCreateArcInGraph (¤t_graph_prot,
¤t_graph,
ep_to_arc_binding[end_type_a + end_type_z],
end_prot_a,
&end_pt_a,
end_prot_z,
&end_pt_z,
arcid,
NULL ,
NULL,
NULL,
STATUS_NORMAL) ;

printf(″wtotapi1: %s\n″ , nvotGetErrorMsg(nvotGetError())) ;
}

 else printf(″Arcs can only be added to a Graph graph, %s is a Box graph\n″ ,
current_graph) ;

 return ;
}
/* Add a providing or using SAP */
void add_sap(char * args)
{

 nvotReturnCode retc ;
 char sap_type[9] ;
 char sap_user_name[MAX_NAME_LEN] ;
 char sap_provider_name[MAX_NAME_LEN] ;
 nvotVertexProtocolType sap_provider_prot ;

strcpy(sap_type, WORD(args, 1)) ;
if (sap_type[0] == ′ p′) /* a ″Providing″ SAP */

{
strcpy(&sap_provider_name, WORD(args, 2)) ;
printf(″About to add providing SAP entry %s, protocol %d\n″ ,

sap_provider_name, current_prot_nbr) ;
retc = nvotCreateProvidingSap(

current_prot_nbr,
&sap_provider_name,
77,
&sap_provider_name) ; /* Note: uses vertex name as SAP name*/

printf(″wtotapi1: %s\n″ , nvotGetErrorMsg(nvotGetError())) ;
return ;

}
if (sap_type[0] == ′ u′) /* a ″Using″ SAP */

{
strcpy(&sap_user_name, WORD(args, 2)) ;
strcpy(&sap_provider_name, WORD(args, 3)) ;
sap_provider_prot = atoi(WORD(args, 4)) ;
printf(″About to add using SAP entry %s, to SAP provided by %s protocol %d\n″ ,

sap_user_name, sap_provider_name, sap_provider_prot) ;
retc = nvotCreateUsingSap(

current_prot_nbr,
&sap_user_name,
77,
&sap_provider_name) ;

printf(″wtotapi1: %s\n″ , nvotGetErrorMsg(nvotGetError())) ;
return ;

}
usage(ADD_SAP_FORMAT) ;

}

/* ″add″ requested - sub-selection */
void add_sub_select(char * addstuff)
{
char add_cmd[8] ;
char args[80] ;
int wordcount ;
 sscanf(addstuff, ″%s %[¬\n]″, &add_cmd, &args) ;
 wordcount = WORDS(&args) ;

Figure 185 (Part 7 of 9). wtotapi1.c Program Listing

Appendix C. Open Topology Program Samples 261

 switch (cmd_to_table(&add_cmd))
{
case GTM_ADD_BOX :

{
if (wordcount != 3) usage(ADD_GRAPH_FORMAT) ;
else
{
if (strcmp(current_graph, ″Root″) == 0)

printf(″You cannot add a box graph to the Root submap″) ;
else add_box_graph(&args) ;

}
break ;
}

case GTM_ADD_GRAPH :
{
if (wordcount != 3) usage(ADD_GRAPH_FORMAT) ;
else
{
if (strcmp(current_graph, ″Root″) == 0) add_root_graph(&args) ;
else add_graph_graph(&args) ;

}
break ;
}

case GTM_ADD_VERTEX :
{
if (wordcount != 2) usage(ADD_VERTEX_FORMAT) ;
else
{
if (strcmp(current_graph, ″Root″) == 0)
printf(″You must set the parent graph for vertex, use parent command\n″) ;
else add_vertex(&args) ;

}
break ;
}

case GTM_ADD_ARC :
{
if (wordcount != 2) usage(ADD_ARC_FORMAT) ;
else add_arc(&args) ;
break ;

}
case GTM_ADD_SAP :
{
if ((wordcount != 2) && (wordcount != 4)) usage(ADD_SAP_FORMAT) ;
else add_sap(&args) ;
break ;

}
default : usage(ADD_GENERAL) ;

}
return ;
}
/* Set the status of a vertex - up, down, marginal, unknown */
void set_vertex(char * args)
{
 int vert_status ;
 char vertex_name[MAX_NAME_LEN] ;
 char status_requested[8] ;

if (WORDS(args) != 2)
{

usage(SET_VERTX_FORMAT) ;
return ;

}
sscanf(args, ″%s %s″, &vertex_name, &status_requested) ;
if ((vert_status = char_to_status(status_requested)) == EOF) return ;

printf (″status - %d\n″ , vert_status) ;
/* Just issue the request */

 nvotChangeVertexStatus(current_prot_nbr, &vertex_name, vert_status) ;
 printf(″wtotapi1: %s\n″ , nvotGetErrorMsg(nvotGetError())) ;
 return ;
}

Figure 185 (Part 8 of 9). wtotapi1.c Program Listing

262 Examples of Using NetView for AIX

int main(int argc, char **argv)
{

 char cmd[8] ;
 char args[80] ;
 int quit = FALSE ;
 char hostname[48] ;
 nvotReturnCode retc ;
 static unsigned int ovwdbTimeout = 5;

 strcpy(current_graph, ″Root″) ;
if (argc > 2)

{
usage(GENERAL_USAGE) ;
exit(-1) ;

}
if(argc == 1) gethostname(hostname, 48) ; /* talk to our own host */
else strcpy(hostname, argv[1]) ;

 /* First, connect to gtmd */
 if(retc = nvotInit(&hostname, FALSE, TRUE) != NVOT_SUCCESS)

{
printf(″Open Topology connection failed\n″) ;
printf(″%s\n″ , nvotGetErrorMsg(retc)) ;
exit(-1) ;

}
 printf(″Open Topology connection to %s successful\n″ , hostname) ;
 /* Try for Synchronous operation */

if (nvotSetSynchronousCreation(ovwdbTimeout) == NVOT_SUCCESS)
printf(″wtotapi1: Open Topology calls will be synchronous″) ;

/* Main loop - read instructions and process until EOF */

 while(quit == FALSE)
{
strcpy(cmd, ″ ″) ;
printf(″Command> ″) ;
if(scanf(″%s %[¬\n]″ , cmd, args) == EOF) break ;
switch (cmd_to_table(cmd))
{
case GTM_SET_PROTOCOL : set_cur_protocol(args) ; break ;
case GTM_SET_PREFIX : strcpy(oid_prefix, args) ; break ;
case GTM_SET_PARENT : set_cur_graph(args) ; break ;
case GTM_ADD_OBJECT : add_sub_select(args) ; break ;
case GTM_SET_OBJECT : set_vertex(args) ; break ;
default : usage(GENERAL_USAGE) ;

}
}

 /* Finished with gtm connection */
 nvotDone() ;
}

Figure 185 (Part 9 of 9). wtotapi1.c Program Listing

Appendix C. Open Topology Program Samples 263

C.2 wtgtm Shell Script Sample Listing

#!/usr/bin/ksh
###
usage
###
function usage
{

print ″Usage for ${action[$1]}″
print ″ ${syntax[$1]}″

}

###
general_usage
###
function general_usage
{
 clear
 print ″**″
 print ″NetView/6000 Generic topology Manager″
 print ″**″
 count=1
 while ((count <= nbr_action))
 do

print ″$count: ${action[$count]}″
print ″ ${syntax[$count]}″
((count=count+1))

 done

 print ″**″
}

###
Translate an icon
###
function translate_icon
{
icon=$1
typeset -L1 first_char
first_char=$icon
case $first_char in

1) case $icon in # cards
1:0) icon=″ . 1 . 3 . 6 . 1 . 2 . 1 . 2 . 2 . 1 . 3 . 5 4 . 0 ″ ; ;
1:1) icon=″ . 1 . 3 . 6 . 1 . 2 . 1 . 2 . 2 . 1 . 3 . 1 1 . 1 ″ ; ;
*) icon=″ . 1 . 3 . 6 . 1 . 2 . 1 . 2 . 2 . 1 . 3 . 5 4 . 0 ″ ; ;

esac;;
2) case $icon in # computer

2:1) icon=″ . 1 . 3 . 6 . 1 . 4 . 1 . 2 . 2 . 1 . 2 . 3 ″ ; ;
2:2) icon=″ . 1 . 3 . 6 . 1 . 4 . 1 . 2 . 6 . 2 ″ ; ;
2:3) icon=″ . 1 . 3 . 6 . 1 . 2 . 1 . 2 . 2 . 1 . 3 . 9 . 1 0 ″ ; ;
*) icon=″ . 1 . 3 . 6 . 1 . 4 . 1 . 2 . 2 . 1 . 2 . 3 ″ ; ;

esac;;
9) case $icon in # network

9:0) icon=″ . 1 . 3 . 6 . 1 . 2 . 1 . 2 . 2 . 1 . 3 . 5 7 . 1 1 ″ ; ;
9:1) icon=″ . 1 . 3 . 6 . 1 . 2 . 1 . 2 . 2 . 1 . 3 . 9 . 1 1 ″ ; ;
*) icon=″ . 1 . 3 . 6 . 1 . 2 . 1 . 2 . 2 . 1 . 3 . 5 7 . 1 1 ″ ; ;

esac;;
*) print ″Icon format is not valid, it should be x:y included in 1:0|1 2:1|2|3 9:0|1″

exit;;
esac
}

Figure 186 (Part 1 of 6). wtgtm Shell Script Listing

264 Examples of Using NetView for AIX

###
Add a GRAPH in ROOT submap
###
function add_root
{
protocol=$1
name=$2
layout=$4

translate_icon $3

snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048213 15 \
 .1.3.6.1.4.1.2.5.3.4.1.1.1 integer 3 \
 .1.3.6.1.4.1.2.5.3.4.1.1.2 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.4.1.1.3 octetstring $name \
 .1.3.6.1.4.1.2.5.3.4.1.1.4 integer $layout \
 .1.3.6.1.4.1.2.5.3.4.1.1.10 objectidentifier $icon \
 .1.3.6.1.4.1.2.5.3.4.1.1.11 integer 1 \
 .1.3.6.1.4.1.2.5.3.4.1.1.12 octetstringascii $name
print ″Trap <newGraph=$name> has been sent to gtmd″
}

###
Delete a GRAPH
###
function delete_graph
{
protocol=$1
name=$2
snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2.6.3.1 $to_host 6 1879048214 15 \
 .1.3.6.1.4.1.2.5.3.4.1.1.2 Objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.4.1.1.3 Octetstring $name
print ″Trap <deleteGraph=$name> has been sent to gtmd″
}

###
Add a GRAPH in GRAPH Parent
###
function add_graph
{
protocol=$1
name=$2
translate_icon $3
parent=$4
index=$5
snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048213 15 \
 .1.3.6.1.4.1.2.5.3.4.1.1.1 integer 4 \
 .1.3.6.1.4.1.2.5.3.4.1.1.2 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.4.1.1.3 octetstring $name \
 .1.3.6.1.4.1.2.5.3.4.1.1.4 integer 7 \
 .1.3.6.1.4.1.2.5.3.4.1.1.10 objectidentifier $icon \
 .1.3.6.1.4.1.2.5.3.4.1.1.11 integer 2 \
 .1.3.6.1.4.1.2.5.3.4.1.1.12 octetstringascii $name
print ″Trap <newGraph=$name> has been sent to gtmd″

snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048222 15 \
 .1.3.6.1.4.1.2.5.3.4.4.1.2 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.4.4.1.3 octetstring $parent \
 .1.3.6.1.4.1.2.5.3.4.4.1.4 integer $index \
 .1.3.6.1.4.1.2.5.3.4.4.1.6 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.4.4.1.7 octetstring $name
print ″Trap <newMember $name in $parent> has been sent to gtmd″
}

###
Add a connection
###
function connect_graph
{
protocol=$1
label=$2
from=$3
to=$4
parent=$5
arcid=$6
index=$7

Figure 186 (Part 2 of 6). wtgtm Shell Script Listing

Appendix C. Open Topology Program Samples 265

snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048206 15 \
 .1.3.6.1.4.1.2.5.3.3.1.1.2 octetstringascii $label \
 .1.3.6.1.4.1.2.5.3.3.1.1.4 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.3.1.1.5 octetstring $from \
 .1.3.6.1.4.1.2.5.3.3.1.1.7 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.3.1.1.8 octetstring $to \
 .1.3.6.1.4.1.2.5.3.3.1.1.9 integer $arcid \
 .1.3.6.1.4.1.2.5.3.3.1.1.15 integer 2 \
 .1.3.6.1.4.1.2.5.3.3.1.1.16 integer 2 \
 .1.3.6.1.4.1.2.5.3.3.1.1.17 integer 0 \
 .1.3.6.1.4.1.2.5.3.3.1.1.18 integer 0
print ″Trap <newArc $from $to> has been sent to gtmd″

snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048216 15 \
 .1.3.6.1.4.1.2.5.3.4.2.1.2 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.4.2.1.3 octetstring $parent \
 .1.3.6.1.4.1.2.5.3.4.2.1.4 integer $index \
 .1.3.6.1.4.1.2.5.3.4.2.1.5 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.4.2.1.6 octetstring $from \
 .1.3.6.1.4.1.2.5.3.4.2.1.7 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.4.2.1.8 octetstring $to \
 .1.3.6.1.4.1.2.5.3.4.2.1.9 integer $arcid
print ″Trap <memberArc $from $to in $parent> has been sent to gtmd″
}

###
Add an Underlying Arc parrallel
###
function add_ula_parrallel
{
protocol=$1
fromg=$2
tog=$3
fromv=$4
tov=$5
arcid=$6
ulaid=$7
snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048210 15 \
 .1.3.6.1.4.1.2.5.3.3.2.1.2 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.3.2.1.3 octetstring $fromg \
 .1.3.6.1.4.1.2.5.3.3.2.1.4 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.3.2.1.5 octetstring $tog \
 .1.3.6.1.4.1.2.5.3.3.2.1.6 integer $arcid \
 .1.3.6.1.4.1.2.5.3.3.2.1.7 integer $ulaid \
 .1.3.6.1.4.1.2.5.3.3.2.1.8 integer 2 \
 .1.3.6.1.4.1.2.5.3.3.2.1.9 integer $protocol \
 .1.3.6.1.4.1.2.5.3.3.2.1.10 octetstring $fromv \
 .1.3.6.1.4.1.2.5.3.3.2.1.11 integer $protocol \
 .1.3.6.1.4.1.2.5.3.3.2.1.12 octetstring $tov \
 .1.3.6.1.4.1.2.5.3.3.2.1.13 integer $arcid
echo ″trap sent to $0d″
print ″Trap <underlyingArc $fromv $tov> has been sent to gtmd″
}

###
Add a vertex
###
function add_vertex
{
protocol=$1
name=$2
translate_icon $3
parent=$4
index=$5

snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048192 15 \
 .1.3.6.1.4.1.2.5.3.1.1.1.2 integer $protocol \
 .1.3.6.1.4.1.2.5.3.1.1.1.3 octetstring $name \
 .1.3.6.1.4.1.2.5.3.1.1.1.9 objectidentifier $icon \
 .1.3.6.1.4.1.2.5.3.1.1.1.10 integer 2 \
 .1.3.6.1.4.1.2.5.3.1.1.1.11 integer 2 \
 .1.3.6.1.4.1.2.5.3.1.1.1.12 integer 0 \
 .1.3.6.1.4.1.2.5.3.1.1.1.13 integer 0
print ″Trap <newVertex $name> has been sent to gtmd″

Figure 186 (Part 3 of 6). wtgtm Shell Script Listing

266 Examples of Using NetView for AIX

snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048222 15 \
 .1.3.6.1.4.1.2.5.3.4.4.1.2 objectidentifier .1.3.6.1.2.1.2.2.1.3.$protocol \
 .1.3.6.1.4.1.2.5.3.4.4.1.3 octetstring $parent \
 .1.3.6.1.4.1.2.5.3.4.4.1.4 integer $index \
 .1.3.6.1.4.1.2.5.3.4.4.1.6 integer $protocol \
 .1.3.6.1.4.1.2.5.3.4.4.1.7 octetstring $name
print ″Trap <newMember $name in $parent> has been sent to gtmd″
}

###
Delete a vertex
###
function del_vertex
{
protocol=$1
name=$2
snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2.6.3.1 $to_host 6 1879048193 15 \
 .1.3.6.1.4.1.2.5.3.1.1.1.2 integer $protocol \
 .1.3.6.1.4.1.2.5.3.1.1.1.3 Octetstring $name
print ″Trap <DeleteVertex $name> has been sent to gtmd″
}

###
add a Service Access Point (SAP)
###
function add_sap
{
protocol1=$1
name1=$2
mode=$3
protocol2=$4
name2=$5
index=$6

case $mode in
″1″) modet=″using″ ; ;
″2″) modet=″providing″ ; ;
″*″) print″$mode must be 1 or 2″

exit;;
esac

snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048196 15 \
 .1.3.6.1.4.1.2.5.3.1.2.1.2 integer $protocol1 \
 .1.3.6.1.4.1.2.5.3.1.2.1.3 octetstring $name1 \
 .1.3.6.1.4.1.2.5.3.1.2.1.4 integer $index \
 .1.3.6.1.4.1.2.5.3.1.2.1.5 integer $mode \
 .1.3.6.1.4.1.2.5.3.1.2.1.6 integer $protocol2 \
 .1.3.6.1.4.1.2.5.3.1.2.1.7 octetstring $name2

print ″Trap <AddSAP $name1($protocol1) is $modet $name2($protocol2)> has been sent to gtmd″

}

###
delete a Service Access Point (SAP)
###
function delete_sap
{
protocol=$1
name=$2

snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2 $to_host 6 1879048197 15 \
 .1.3.6.1.4.1.2.5.3.1.2.1.2 integer $protocol \
 .1.3.6.1.4.1.2.5.3.1.2.1.3 octetstring $name \
 .1.3.6.1.4.1.2.5.3.1.2.1.4 integer 1
print ″Trap <delSAP $name($protocol)> has been sent to gtmd″

}

###
set status for a vertex
###
function set_status
{
protocol=$1
name=$2
status=$3

Figure 186 (Part 4 of 6). wtgtm Shell Script Listing

Appendix C. Open Topology Program Samples 267

case $status in
″down″)

snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2.6.3.1 $to_host 6 1879048194 15 \
.1.3.6.1.4.1.2.5.3.1.1.1.2 Integer $protocol \
.1.3.6.1.4.1.2.5.3.1.1.1.3 Octetstring $name \
.1.3.6.1.4.1.2.5.3.1.1.1.9 Objectidentifier 1.3.6.1.2.1.2.2.1.3.54.0 \
.1.3.6.1.4.1.2.5.3.1.1.1.10 Integer 1 \
.1.3.6.1.4.1.2.5.3.1.1.1.11 Integer 1 \
.1.3.6.1.4.1.2.5.3.1.1.1.12 Integer 8 \
.1.3.6.1.4.1.2.5.3.1.1.1.13 Integer 2
print ″Trap <modifyVertex $name> has been sent to gtmd″ ; ;

*) snmptrap -c $COM_NAME $from_host .1.3.6.1.4.1.2.6.3.1 $to_host 6 1879048194 15 \
.1.3.6.1.4.1.2.5.3.1.1.1.2 Integer $protocol \
.1.3.6.1.4.1.2.5.3.1.1.1.3 Octetstring $name \
.1.3.6.1.4.1.2.5.3.1.1.1.9 Objectidentifier 1.3.6.1.2.1.2.2.1.3.54.0 \
.1.3.6.1.4.1.2.5.3.1.1.1.10 Integer 2 \
.1.3.6.1.4.1.2.5.3.1.1.1.11 Integer 2 \
.1.3.6.1.4.1.2.5.3.1.1.1.12 Integer 0 \
.1.3.6.1.4.1.2.5.3.1.1.1.13 Integer 0
print ″Trap <modifyVertex $name> has been sent to gtmd″ ; ;

esac

}

###
Main Routine
###
i=0
((i=i+1))
 action[$i]=″Add a Graph in ROOT submap″
 syntax[$i]=″$0 addr protocol name icon layout″
 ADDR=$i

((i=i+1))
 action[$i]=″Add a Graph″
 syntax[$i]=″$0 addg protocol name icon parent index″
 ADDG=$i

((i=i+1))
 action[$i]=″Add a Vertex″
 syntax[$i]=″$0 addv protoco] name icon parent index″
 ADDV=$i

((i=i+1))
 action[$i]=″Add a Service Access point (SAP)″
 syntax[$i]=″$0 sap protocol1 name1 using(1)/providing(2) protocol2 name2 index″
 SAP=$i

((i=i+1))
 action[$i]=″Connection between two graphs″
 syntax[$i]=″$0 cong protocol label from to parent arcid index″
 CONG=$i

((i=i+1))
 action[$i]=″Add an underlying arc (parallel)″
 syntax[$i]=″$0 ulap protocol graph1 graph2 vertex1 vertex2 arcid ulaid″
 ULAP=$i

((i=i+1))
 action[$i]=″Delete a Graph″
 syntax[$i]=″$0 delg protocol name″
 DELG=$i

((i=i+1))
 action[$i]=″Delete a Vertex″
 syntax[$i]=″$0 delv protocol name″
 DELV=$i

((i=i+1))
 action[$i]=″Delete a Service Access point (SAP)″
 syntax[$i]=″$0 dels protocol name″
 DELS=$i

((i=i+1))
 action[$i]=″Set status for a vertex″
 syntax[$i]=″$0 set protocol name up/down″
 SET=$i

nbr_action=i

Figure 186 (Part 5 of 6). wtgtm Shell Script Listing

268 Examples of Using NetView for AIX

from_host=`hostname`
to_host=`hostname`
COM_NAME=″ITSC″

case $1 in

″addr″)
case $2 in

″?″) usage $ADDR;;
″″) usage $ADDR;;
*) add_root $2 $3 $4 $5;;

esac;;

″addg″)
case $2 in

″?″) usage $ADDG;;
″″) usage $ADDG;;
*) add_graph $2 $3 $4 $5 $6;;

esac;;

″delg″)
case $2 in

″?″) usage $DELG;;
″″) usage $DELG;;
*) delete_graph $2 $3;;

esac;;

″addv″)
case $2 in

″?″) usage $ADDV;;
″″) usage $ADDV;;
*) add_vertex $2 $3 $4 $5 $6;;

esac;;

″delv″)
case $2 in

″?″) usage $DELV;;
″″) usage $DELV;;
*) del_vertex $2 $3;;

esac;;

″cong″)
case $2 in

″?″) usage $CONG;;
″″) usage $CONG;;
*) connect_graph $2 $3 $4 $5 $6 $7 $8;;

esac;;

″ulap″)
case $2 in

″?″) usage $ULAP;;
″″) usage $ULAP;;
*) add_ula_parrallel $2 $3 $4 $5 $6 $7 $8;;

esac;;

″sap″)
case $2 in

″?″) usage $SAP;;
″″) usage $SAP;;
*) add_sap $2 $3 $4 $5 $6 $7;;

esac;;

″dels″)
case $2 in

″?″) usage $DELS;;
″″) usage $DELS;;
*) delete_sap $2 $3;;

esac;;

″set″)
case $2 in

″?″) usage $SET;;
″″) usage $SET;;
*) set_status $2 $3 $4 $5;;

esac;;

*) general_usage;;
esac

Figure 186 (Part 6 of 6). wtgtm Shell Script Listing

Appendix C. Open Topology Program Samples 269

270 Examples of Using NetView for AIX

Appendix D. Database Samples

This appendix contains examples of code that exercises the SQL database
support of NetView for AIX:

• wtqnode - shell script version

A script that reports node and interface information based on the results of
SQL queries of the IP topology database.

• wtqnode - C program example

An enhanced version of the shell script, written in C with embedded SQL
queries.

• wtqnetwork

A C program that displays segment and interface information based on data
from the IP topology database.

• wttraplog

A C program that produces a report of Node Up/Node Down incidents with
down-time.

• wtovwconv

A program that converts NetView for AIX object database contents into SQL
tables.

 Copyright IBM Corp. 1994 271

D.1 Sample Shell Script wtqnode
This sample was tested using the Oracle RDBMS.

#!/usr/bin/ksh

export ORACLE_SID=I
export ORACLE_HOME=/usr/oracle

WORK=wtqnode.out

sqlplus -s uid/pwd @lc $1 > $WORK

count=0
nbif=0
while read line
do

((count=count+1))
if [″$count″ -le 3]
then

continue;
else

((nbif=nbif+1))
objid[$nbif]=`echo $line | cut -d″ ″ -f1`
tmp=`echo $line | cut -d″ ″ -f2`
iface[$nbif]=$tmp

fi
done < $WORK

print ″IP hostname:″
sqlplus -s uid/pwd @lo ${objid[1]} ″ip_hostname″ | awk ′ ! / old | !/new &&
 length>0′

print ″IP address:″
sqlplus -s uid/pwd @lo ${objid[1]} ″snmpaddr″ \

| awk ′ ! / old |new / && length>0′

print ″===″
print ″ObjID IP Address Phys.Address Type IP Network″
print ″″
count=1
while ((count < nbif))
do

sqlplus -s uid/pwd @li1 ${iface[$count]} \
| awk ′ ! / old |new / && length>0′

((count=count+1))
done

Figure 187. wtqnode AIX Script File

The three SQL queries embedded by this script, lc.sql, lo.sql, and li1.sql, are
shown below:

select nodeclass.objid,memberof.containedobjid
from nodeclass,memberof
where

containerobjid =
(select objid from nodeclass where ip_hostname like ′%&1%′)

and
nodeclass.objid=memberof.containerobjid

;
exit

Figure 188. lc.sql SQL Query File. This query extracts the object IDs of the node and all
interfaces contained within it from the IP topology database.

272 Examples of Using NetView for AIX

select &2
from nodeclass
where objid=&1
;

exit

Figure 189. lo.sql SQL Query File. This very simple query takes two arguments. The
first is an objectID that defines the node being accessed, the second is the name of the
table column we want to extract for this row.

column objid format a8
column description format a15
column snmp_ifphysaddr format a15
column snmp_ifdescr format a4 truncated
column ip_network_name format a15
select interfaceclass.objid,

interfaceclass.ip_address,
snmp_ifphysaddr,
snmp_ifdescr,
ip_network_name

from interfaceclass,
coupledwith,
objecttable,
networkclass

 where interfaceclass.objid=&1
and coupledwith.objid2=interfaceclass.objid
and coupledwith.objid1=objecttable.objid
and objecttable.classid=1
and networkclass.objid=

(select objid1
from coupledwith,

objecttable
where coupledwith.objid2=&1

and classid=1
and coupledwith.objid1=objecttable.objid)

;
exit

Figure 190. li1.sql SQL Query File. This query extracts detailed interface information for
a given interface object ID.

Appendix D. Database Samples 273

D.2 Sample C Program wtqnode
This sample was tested using the Informix RDBMS. The make file that we used
to compile it follows the program listing.

/*---*
* *

 * wtqnode.ec Sample SQL Report Program *
 * *
 * (C) Copyright International Business Machines Corporation 1994 *
 * *
 * This program includes embedded SQL select statements, which *
 * extract details about a given node or nodes, including *
 * network interface data. The program formats this data and *
 * prints it *
 * *
 * From redbook GG24-xxxx, Examples Using AIX NetView/6000 V3 *
 * *
 ---/
#include <stdio.h>
$include sqltypes;

char errmsg[400];
char *convert_sqlstatus();
main(int argc, char *argv[])
{

$char *s;
$char node_id[36];
$char ip_hostname[36];
$long objid;
$long interface_id;
$char snmp_sysdescr[255];
$char snmp_syslocation[255];
$char snmp_syscontact[255];
$char snmpaddr[15];
$long topm_interface_count;
$char ip_address[15];
$char ip_network_name[15];
$char snmp_ifdescr[5];
$char snmp_ifphysaddr[14];
$int ip_status;
char *c_ip_status;

int count;
if (strcmp(argv[1],″?″) == 0)
{

printf(″Usage: %s [node_name].\n″ , argv[0]);
printf(″ This command list the nodes contained in Informix Database.\n″) ;
printf(″ If [node_name] is specified then the list will be reduced to nodes\n″) ;
printf(″ where ip_hostname matches with [node_name].\n″) ;
exit(1);

}

/* open openview database */
$database openview;
err_chk(″Open database″) ;

/* build search value will be %node_name% */
if(argc==1) sprintf(node_id,″%s″,″%″);

else sprintf(node_id,″%s%s%s″,″%″,argv[1],″%″);

/* prepare and declare the two needed queries */
/* 1. q1,c1: list of nodes with objid */
/* 2. q2,c2: list of interfaces within a node */

/* prepare the first select for how many nodes
and find out their objid */

$prepare q1 from
″select objid,

ip_hostname,
snmp_sysdescr,
snmp_syslocation,
snmp_syscontact,
snmpaddr

from nodeclass
where ip_hostname like ?;″ ;

err_chk(″Prepare query q1″) ;

Figure 191 (Part 1 of 4). wtqnode.ec C Program with Embedded SQL

274 Examples of Using NetView for AIX

/* declare a cursor in case of several rows */
$declare c1 cursor for q1;
err_chk(″Declare Cursor c1″) ;

/* list of interfaces */
$prepare q2 from

″select containedobjid
from nodeclass,

memberof
where containerobjid=?
and memberof.containerobjid=nodeclass.objid;″ ;

err_chk(″Prepare query q2″) ;

/* declare a cursor for list of interfaces */
$declare c2 cursor for q2;
err_chk(″Declare Cursor c2″) ;

/* open cursor c1 */
$open c1 using $node_id;
err_chk(″Open cursor c1″) ;

/* */
count=0;
$fetch c1 into $objid,

$ip_hostname,
$snmp_sysdescr,
$snmp_syslocation,
$snmp_syscontact,
$snmpaddr;

if(SQLCODE==SQLNOTFOUND)
{

printf(″No rows has been selected for criteria %s\n\n″ , node_id);
exit(1);

}

while(1)
{

if (count != 0)
{

$fetch c1 into $objid,
$ip_hostname,
$snmp_sysdescr,
$snmp_syslocation,
$snmp_syscontact,
$snmpaddr;

if(SQLCODE==SQLNOTFOUND) break;
}
count++;
printf (″==\n″) ;
printf (″objid:%d - ip_hostname: %s\n″ , objid,ip_hostname);
printf (″Description : %s\n″ , snmp_sysdescr);
printf (″Location : %s\n″ , snmp_syslocation);
printf (″Contact : %s\n″ , snmp_syscontact);
printf (″SNMP address: %s\n″ , snmpaddr);
printf (″--\n″) ;

$open c2 using $objid;
err_chk(″Open cursor c2″) ;
printf(″Objid IP Address Network Name Phys. Address Type Status\n″) ;
printf(″-------- --------------- --------------- ------------- ---- ---------\n″) ;

Figure 191 (Part 2 of 4). wtqnode.ec C Program with Embedded SQL

Appendix D. Database Samples 275

while(1)
{

$fetch c2 into $interface_id;
if (SQLCODE == SQLNOTFOUND) break; /* that means end of rows */

/* give characteristics of interface including network address */
$select interfaceclass.ip_address,

ip_network_name,
snmp_ifphysaddr,
snmp_ifdescr,
interfaceclass.ip_status

into $ip_address,
$ip_network_name,
$snmp_ifphysaddr,
$snmp_ifdescr,
$ip_status

from interfaceclass,
coupledwith,
objecttable,
networkclass

where interfaceclass.objid=$interface_id
and coupledwith.objid2=interfaceclass.objid
and coupledwith.objid1=objecttable.objid
and objecttable.classid=1

/*
*/

and networkclass.objid =
(select objid1

/*
from interfaceclass,

coupledwith,
*/

from coupledwith,
objecttable

/*
where interfaceclass.objid=$interface_id

and coupledwith.objid2=interfaceclass.objid
*/

where coupledwith.objid2=$interface_id
and classid=1
and coupledwith.objid1=objecttable.objid);

/* convert status in something comprehensible */
c_ip_status = convert_sqlstatus(ip_status);

printf(″%7d ″ , interface_id);
printf(″%15s ″ , ip_address);
printf(″%15s ″ , ip_network_name);
printf(″%14s ″ , snmp_ifphysaddr);
printf(″%4s ″ , snmp_ifdescr);
printf(″%s ″ , c_ip_status);
printf(″\n″) ;

}
$close c2;

}
printf (″==\n″) ;
printf(″\n%d row(s) retrieved.\n″ , count);

}

Figure 191 (Part 3 of 4). wtqnode.ec C Program with Embedded SQL

276 Examples of Using NetView for AIX

/*---*/
/* convert the integer value of status */
/*---*/
char * convert_sqlstatus(ip_status)
int ip_status;
{

switch(ip_status)
{
case 1: return(″unknown″) ;
case 2: return(″up″) ;
case 3: return(″marginal″) ;
case 4: return(″down″) ;
case 5: return(″unmanaged″) ;
case 6: return(″acknowledge″) ;
case 7: return(″User 1″) ;
case 8: return(″User 2″) ;

}
}

/*---*/
/* err_chk() checks sqlca.code and if an error has occurred, it uses */
/* rgetmsg() to display the message for the error number in sqlca.code. */
/*---*/
err_chk(name)
char *name;
{

if(sqlca.sqlcode != 0)
{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf(″Error %d during %s: %s\n″ , sqlca.sqlcode, name, errmsg);
exit(1);
}

}

Figure 191 (Part 4 of 4). wtqnode.ec C Program with Embedded SQL

EXEC=wtqnode
SQL=$(EXEC).ec
SRC=$(EXEC).c
OBJ=$(EXEC).o
LIBS=-lgen -los -lsql -lbsd
FLAGS=-L/usr/informix/lib/esql
all: $(EXEC)

$(EXEC) : $(OBJ)
cc -g -o $(EXEC) $(OBJ) $(LIBS) $(FLAGS)

$(OBJ) : $(SRC)
cc -g -c $(SRC)

$(SRC) : $(SQL)
esql -e $(SQL)

Figure 192. Makefile for wtqnode.ec Program Sample

Appendix D. Database Samples 277

D.3 Sample C Program wtqnetwork
This program was tested using the Informix RDBMS.

/*---*
* *

 * wtqnetwork.ec Sample SQL Report Program *
 * *
 * (C) Copyright International Business Machines Corporation 1994 *
 * *
 * This program includes embedded SQL select statements, which *
 * extract details about a given IP network or networks including *
 * all segments and interfaces. The program formats this data and *
 * prints it *
 * *
 * From redbook GG24-xxxx, Examples Using AIX NetView/6000 V3 *
 * *
 ---/
#include <stdio.h>
$include sqltypes;

char errmsg[400];
char *convert_sqlstatus();
main(int argc, char *argv[])
{

$char *s;
$char network_name[36];
$char snmp_ifphysaddr[15];
$char ip_hostname[36];
$char ip_network_name[36];
$char n_ip_address[16];
$char i_ip_address[16];
$char selection_name[36];
$char ip_network_address[16];
$char ip_subnet_mask[16];
$char i_ip_subnet_mask[16];
$long i_objid;
$long n_objid;
$long segment_id;
$int ip_status;
char *c_ip_status;

int count;
int i_count;
if (strcmp(argv[1],″?″) == 0)
{

printf(″Usage: %s [network_name].\n″ , argv[0]);
printf(″ This command list the networks contained in Informix Database.\n″) ;
printf(″ If [network_name] is specified then the list will be reduced to networks\n″) ;
printf(″ where ip_network_name matches with [network_name].\n″) ;
exit(1);

}

/* open openview database */
$database openview;
err_chk(″Open database″) ;

/* build search value will be %node_name% */
if(argc==1) sprintf(network_name,″%s″,″%″);

else sprintf(network_name,″%s%s%s″,″%″,argv[1],″%″);

/* prepare and declare the 3 needed queries */
/* 1. q1,c1: list of network */
/* 1. q2,c3: list of segment in the network */
/* 1. q3,c3: list of interfaces in the segment */

/* list the network */
$prepare q1 from

″select objid,
ip_network_name,
ip_address,
ip_subnet_mask

from networkclass
where ip_network_name like ?;″ ;

err_chk(″Prepare query q1″) ;

Figure 193 (Part 1 of 3). wtqnetwork.ec Program Listing

278 Examples of Using NetView for AIX

/* declare a cursor for c1 */
$declare c1 cursor for q1;
err_chk(″Declare Cursor c1″) ;

/* list of segment in the network */
$prepare q2 from

″select containedobjid,
selection_name

from memberof,
segmentclass

where containerobjid=?
and memberof.containedobjid=segmentclass.objid;″ ;

err_chk(″Prepare query q2″) ;

/* declare a cursor for c2 */
$declare c2 cursor for q2;
err_chk(″Declare Cursor c2″) ;

/* list of interfaces in the segment */
$prepare q3 from

″select objid1,ip_address
from coupledwith,

interfaceclass
where objid2=?

and interfaceclass.objid=coupledwith.objid1
order by ip_address;″ ;

err_chk(″Prepare query q3″) ;

/* declare a cursor for c3 */
$declare c3 cursor for q3;
err_chk(″Declare Cursor c3″) ;

/* open cursor c1 */
$open c1 using $network_name;
err_chk(″Open cursor c1″) ;

/* */
count=0;
$fetch c1 into $n_objid,

$ip_network_name,
$n_ip_address,
$ip_subnet_mask;

if(SQLCODE==SQLNOTFOUND)
{

printf(″No rows has been selected for criteria %s\n\n″ , network_name);
exit(1);

}

while(1)
{

if (count != 0)
{

$fetch c1 into $n_objid,
$ip_network_name,
$n_ip_address,
$ip_subnet_mask;

if(SQLCODE==SQLNOTFOUND) break;
}
count++;
printf (″==\n″) ;
printf (″OVw id = %d - Network name = %s\n″ , n_objid,ip_network_name);
printf (″IP Address = %s - ″ , n_ip_address);
printf (″Subnet mask = %s\n″ , ip_subnet_mask);

$open c2 using $n_objid;
err_chk(″Open cursor c2″) ;
while(1)
{

$fetch c2 into $segment_id,
$selection_name;

if (SQLCODE == SQLNOTFOUND) break; /* that means end of rows */
printf(″--> Contents of Segment: %s\n″ , selection_name);
printf (″--\n″) ;
printf (″ ObjID Stat IP Address Phys. Address Node\n″) ;
printf (″--\n″) ;

Figure 193 (Part 2 of 3). wtqnetwork.ec Program Listing

Appendix D. Database Samples 279

$open c3 using $segment_id;
err_chk(″Open cursor c3″) ;
i_count = 0;
while(1)

{
$fetch c3 into $i_objid;
if (SQLCODE == SQLNOTFOUND) break; /* that means end of rows */
i_count++;
/* find characteristics of interface including node name */
$select ip_address,

snmp_ifphysaddr,
ip_hostname,
interfaceclass.ip_status

into $i_ip_address,
$snmp_ifphysaddr,
$ip_hostname,
$ip_status

from interfaceclass,
nodeclass,
memberof

where interfaceclass.objid=$i_objid
and memberof.containedobjid=interfaceclass.objid
and nodeclass.objid=memberof.containerobjid

;
c_ip_status=convert_sqlstatus(ip_status);
printf(″ %2d %5d %6s %14s ″ , i_count,i_objid,c_ip_status,i_ip_address);
printf(″ %14s %14s ″ , snmp_ifphysaddr,ip_hostname);
printf(″\n″) ;

}
$close c3;

}
$close c2;

}
printf (″==\n″) ;
printf(″\n%d row(s) retrieved.\n″ , count);

}

/*---*/
/* convert the integer value of status */
/*---*/
char * convert_sqlstatus(ip_status)
int ip_status;
{

switch(ip_status)
{
case 1: return(″unknown″) ;
case 2: return(″up″) ;
case 3: return(″marginal″) ;
case 4: return(″down″) ;
case 5: return(″unmanaged″) ;
case 6: return(″acknowledge″) ;
case 7: return(″User 1″) ;
case 8: return(″User 2″) ;

}
}

/*---*/
/* err_chk() checks sqlca.code and if an error has occured, it uses */
/* rgetmsg() to display the message for the error number in sqlca.code. */
/*---*/
err_chk(name)
char *name;
{

if(sqlca.sqlcode != 0)
{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf(″Error %d during %s: %s\n″ , sqlca.sqlcode, name, errmsg);
exit(1);
}

}

Figure 193 (Part 3 of 3). wtqnetwork.ec Program Listing

280 Examples of Using NetView for AIX

D.4 Sample C Program wttraplog
This program was tested using the Informix RDBMS.

/*---*
* *

 * wttraplog.ec Sample SQL Report Program *
 * *
 * (C) Copyright International Business Machines Corporation 1994 *
 * *
 * This program includes embedded SQL select statements, which *
 * extract Node Up and Node Down events from the trapdlog *
 * table and correlate them together. It prints a report showing *
 * node downtime. *
 * *
 * From redbook GG24-xxxx, Examples Using AIX NetView/6000 V3 *
 * *
 ---/
#include <stdio.h>
$include sqltypes;

char errmsg•400“;
main(int argc, char *argv•“)
{

$char ip_hostname•36“;
$char description•255“;
$char trap_create_time•20“;
$long epochtime;

/* Local variables to save Node Down information */
char downname•36“ ;
char downtime•20“ ;
long down_epoch ;
int count ;

if (strcmp(argv•1“,″?″) == 0)
{

printf(″Usage: %s \n″ , argv•0“);
printf(″ This command displays a report of node availability based \n″) ;
printf(″ on Node Down/Node Up records from the trapdlog table.\n″) ;
printf(″ (Uses the informix database).\n″) ;
exit(1);

}

/* open openview database */
$database openview;
err_chk(″Open database″) ;

/* prepare and declare the query */
/* q1,c1: list of Up/Down events, sorted by node and time*/

$prepare q1 from
″select ip_hostname,

trap_create_time,
description,
epochtime

from trapdlog
where description like ′%Node Up%′

or description like ′%Node Down%′
order by ip_hostname,trap_create_time″ ;

err_chk(″Prepare query q1″) ;

/* declare a cursor in case of several rows */
$declare c1 cursor for q1;
err_chk(″Declare Cursor c1″) ;

Figure 194 (Part 1 of 2). wttraplog.ec Program Listing

Appendix D. Database Samples 281

/* open cursor c1 */
$open c1 ;
err_chk(″Open cursor c1″) ;

/* */
count=0;
$fetch c1 into $ip_hostname,

$trap_create_time,
$description,
$epochtime;

if(SQLCODE==SQLNOTFOUND)
{

printf(″No rows selected \n″) ;
exit(1);

}
printf (″==\n″) ;
printf(″Node name Down from: to: Seconds:\n″) ;
printf(″------------------------------------ ------------------ ------------------ --------\n″) ;

while(1)
{

if (count != 0)
{
$fetch c1 into $ip_hostname,

$trap_create_time,
$description,
$epochtime;

if(SQLCODE==SQLNOTFOUND) break;
}
count++;

if (strncmp(description, ″Node Down″, 9) == 0)
{
if (strcmp(downname, ip_hostname) != 0) printf(″\n″) ;
strcpy(downtime,trap_create_time) ;
strcpy(downname,ip_hostname) ;
down_epoch = epochtime ;

}
else

{
if (strcmp(downname, ip_hostname) == 0)

{
printf(″%36s ″ , ip_hostname) ;
printf(″%15s ″ , downtime) ;
printf(″%15s ″ , trap_create_time) ;
printf(″%d\n″ , epochtime-down_epoch) ;

}
}

}
printf (″==\n″) ;
printf(″\n%d row(s) retrieved.\n″ , count);

}

/*---*/
/* err_chk() checks sqlca.code and if an error has occured, it uses */
/* rgetmsg() to display the message for the error number in sqlca.code. */
/*---*/
err_chk(name)
char *name;
{

if(sqlca.sqlcode != 0)
{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf(″Error %d during %s: %s\n″ , sqlca.sqlcode, name, errmsg);
exit(1);
}

}

Figure 194 (Part 2 of 2). wttraplog.ec Program Listing

282 Examples of Using NetView for AIX

D.5 Sample Program wtovwconv
This program generates SQL command files from the NetView for AIX object
database.

/*---*
* *

 * wtovwconv.c Sample Program *
 * *
 * (C) Copyright International Business Machines Corporation 1994 *
 * *
 * This program uses OVw API calls to build sql statements that *
 * will create and load an SQL table containing the NV/6000 *
 * object database contents. *
 * *
 * From redbook GG24-xxxx, Examples Using AIX NetView/6000 V3 *
 * *
 ---/
#include <stdio.h>
#include <OV/ovw_obj.h>
int warning;
int maxl=18;

usage()
{

printf(″Usage: wtovwconv table_name\n″) ;
printf(″ table_name length has to be < 5\n″) ;
printf(″ * will create wtc_′ table_name′ . sql SQL command file\n″) ;
printf(″ - drop table wt_′ table_name′ \n″) ;
printf(″ - create table wt_′ table_name′ \n″) ;
printf(″ * will create wtl_′ table_name′ . sql SQL command file\n″) ;
printf(″ - insert into table wt_′ table_name′ for each OVwDb object\n″) ;
exit(1);

}

main(int argc,char *argv[])
{
FILE *f1;
FILE *f2;
OVwFieldBindList *fbl;
OVwObjectIdList *lo;
OVwFieldList *flp;
OVwFieldInfo *fip;
int i,j,ret;
int k,commit;
char out[256];
unsigned int flag=1;
char *tname[16];
char *f1name[16];
char *f2name[16];

if (argc!=2) usage();
if (strlen(argv[1]) > 4) usage();
sprintf(tname,″wt%s″ , argv[1]);
sprintf(f1name,″wtc_%s.sql″ , argv[1]);
sprintf(f2name,″wtl_%s.sql″ , argv[1]);

printf(″* Connexion a OVwDb RC=%d\n″ , ret);
ret = OVwDbInit();
if(ret!=0)

{
exit(1);
}

f1=fopen(f1name,″w″) ;
f2=fopen(f2name,″w″) ;

fprintf(f1,″drop table %s;\n\ncommit;\n\n″ , tname);
fprintf(f1,″create table %s (\nobjid integer primary key\n″ , tname);
/* list all fields */
flp = OVwDbListFields(ovwAllFields);

printf(″* Building file %s command to create %s table.\n″ , f1name,tname);

Figure 195 (Part 1 of 4). wtovwconv.c Program Listing

Appendix D. Database Samples 283

for (i=0, fip=flp->field_list; i<flp->count; i++,fip++)
{

if(fip->field_flags!=1)
{

grobw(fip->field_name,out);
if (warning==0)
{
switch(fip->field_type)
{

/* fip->field_type = 1 */
/* integer */
case(1):
{

fprintf(f1,″%s%18s%s″ ,
″ , ″ ,
out,
″ integer\n″) ;

break;
}

/* fip->field_type = 2 */
/* boolean =char(5) false/true */
case(2):
{

fprintf(f1,″%s%18s%s″ ,
″ , ″ ,
out,
″ char(5)\n″) ;

break;
}

/* fip->field_type = 3 */
/* string */
case(3):
{

fprintf(f1,″%s%18s%s″ ,
″ , ″ ,
out,
″ char(255)\n″) ;

break;
}

/* fip->field_type = 4 */
/* enum */

case(4):
{

fprintf(f1,″%s%18s%s″ ,
″ , ″ ,
out,
″ char(25)\n″) ;

break;
}

}
}

}
}

OVwDbFreeFieldList(flp);
fprintf(f1,″) ; \n\ncommit;\n″) ;
fclose(f1);

printf(″* Building file %s command to load %s table.\n″ , f2name,tname);

/* do a commit each 20 insert */
commit = 20; /* commit is the limit */
k = 1; /* k is the counter */

/* get list of all objects */
lo=OVwDbListObjectsByFieldValue(NULL);
printf(″ -> Loading %8d/%8d (Objid=%d)\n″ , 1 , lo->count,lo->object_ids[0]);
for (i=0; i < lo->count ; i++)
{

fbl=OVwDbGetFieldValues(lo->object_ids[i]);
/* new insert */
fprintf(f2,″insert into %s (objid\n″ , tname);

Figure 195 (Part 2 of 4). wtovwconv.c Program Listing

284 Examples of Using NetView for AIX

/*----------------------------*/
/* 1. list the column to load */
/*----------------------------*/
for (j=0; j <fbl->count ; j++)
{

/* get rid of list fields */
if(fbl->fields[j].field_val->is_list==0)
{

grob(OVwDbFieldIdToFieldName(fbl->fields[j].field_id),out);
if (warning==0) fprintf(f2,″ ,%s\n″ , out);

}
}

/*----------------------------*/
/* 2. list the values to load */
/*----------------------------*/
fprintf(f2,″)\nvalues(%d\n″ ,

lo->object_ids[i]);
for (j=0; j <fbl->count; j++)
{

grob(OVwDbFieldIdToFieldName(fbl->fields[j].field_id),out);
if (warning==0)

{
/* get rid of list fields */
if(fbl->fields[j].field_val->is_list==0)
{

switch(fbl->fields[j].field_val->field_type)
{

/* field_type=1 integer */
case(1):
{

fprintf(f2,″ ,%d\n″ ,
fbl->fields[j].field_val->un.int_val);

break;
}

/* field_type=2 boolean false/true */
case(2):
{

if(fbl->fields[j].field_val->un.bool_val==0)
fprintf(f2,″ ,%cfalse%c\n″ ,34 ,34) ;

else
fprintf(f2,″ ,%ctrue%c\n″ ,34 ,34) ;

break;
}

/* field_type=3 string */
case(3):
{

grocr(fbl->fields[j].field_val->un.string_val,out);
fprintf(f2,″ ,%c%s%c\n″ , 3 4 ,

out,
34);

break;
}

/* field_type=4 enum */
case(4):
{

fprintf(f2,″ ,%d\n″ ,
fbl->fields[j].field_val->un.enum_val);

break;
}

} /* end of switch */
}

}
}
fprintf(f2,″);\n\n″) ;

/* is it time to make a commit ? */
k++;
if (k==commit)
{

k=1; /* initialize the counter */
printf(″ -> Loading %8d/%8d (Objid=%d)\n″ , i+1,lo->count,lo->object_ids[i]);
fprintf(f2,″commit;\n\n″) ;

}

Figure 195 (Part 3 of 4). wtovwconv.c Program Listing

Appendix D. Database Samples 285

/* free memory for fields list */
OVwDbFreeFieldList(fbl);

}

/* a last commit */
 printf(″ -> Loading %8d/%8d (Objid=%d)\n″ , i,lo->count,lo->object_ids[i-1]);
 fprintf(f2,″commit;\n\n″) ;

/* close SQL insert file */
fclose(f2);

}

grocr(char in[256],char out[256])
{

int i=0;
for(i=0; i<strlen(in); i++)
{

if(in[i] == ′ \n′)
{

out[i]=′ ′ ;
}
else out[i]=in[i];

}
out[i]=′ \0′ ;
return;

}

grob(char in[256],char out[256])
{

int i=0,j=0;
warning=0;
out[0]=in[0];
while(in[i] != ′ \0′)
{

i++;
if(in[i] != ′ ′ && in[i] != ′ . ′)
{

j++;
out[j]=in[i];
if(j==maxl+1)
{

j=j-1;
warning=1;
break;

}
}

}
out[j]=′ \0′ ;
return;

}

grobw(char in[256],char out[256])
{

int i=0,j=0;
warning=0;
out[0]=in[0];
while(in[i] != ′ \0′)
{

i++;
if(in[i] != ′ ′ && in[i] != ′ . ′)
{

j++;
out[j]=in[i];
if(j==maxl+1)
{

j=j-1;
out[j]=′ \0′ ;
warning=1;
printf(″ -> Warning: column NOT loaded - length > %d - %s\n″ , maxl,in);
return;

}
}

}
out[j]=′ \0′ ;
return;

}

Figure 195 (Part 4 of 4). wtovwconv.c Program Listing

286 Examples of Using NetView for AIX

Appendix E. NetView for AIX Default Events

event name number catg description
WARN_EV 0050462720 2 Warnings
NM_EV 0050790400 7 Node Marginal
SN_EV 0050790401 7 Segment Normal
SM_EV 0050790402 7 Segment Marginal
NETN_EV 0050790403 7 Network Normal
NETM_EV 0050790404 7 Network Marginal
SA_EV 0050790405 7 Segment Added
SD_EV 0050790406 7 Segment Deleted
NETA_EV 0050790407 7 Network Added
NETD_EV 0050790408 7 Network Deleted
CPP_EV 0050790411 7 Change Polling Period
FP_EV 0050790412 7 Forced Poll
MNET_EV 0050790416 7 Manage Network
UNET_EV 0050790417 7 Unmanage Network
MN_EV 0050790418 7 Manage Node
UN_EV 0050790419 7 Unmanage Node
MSEG_EV 0050790420 7 Manage Segment
USEG_EV 0050790421 7 Unmanage Segment
NMTM_EV 0050790423 7 Netmon Change trace mask
CIS_EV 0050790427 7 Change Interface Segment
FMTCHG 0050790438 7 trapd.conf format changed
MIBCHG 0050790439 7 ASN.1 mib definition file format changed
COLCHG 0050790440 7 SNMP data collector file format changed
MI_EV 0050790441 7 Manage Interface
UI_EV 0050790442 7 Unmanage Interface
NETFC_EV 0050790443 7 Network Flags changed
SEGFC_EV 0050790444 7 Segment Flags changed
NFC_EV 0050790445 7 Node Flags changed
IFC_EV 0050790446 7 Interface Flags changed
CPUL_EV 0058720256 0 CPU Load
DSPU_EV 0058720257 0 Disk Space Percentage Used
IPD_EV 0058720258 0 Interface Percent Deferred
IPC_EV 0058720259 0 Interface Percent Collisions
ICE_EV 0058720260 0 Interface CRC Errors
IPIE_EV 0058720261 0 Interface Percent Input Errors
IPOE_EV 0058720262 0 Interface Percent Output Errors
DCOL_EV 0058720263 0 Data Collector detected threshold
DCRA_EV 0058720264 0 Data Collector re-arm event
IADD_EV 0058785792 1 Interface Added
IDEL_EV 0058785793 1 Interface Deleted
NADD_EV 0058785794 1 Node Added
NDEL_EV 0058785795 1 Node Deleted
ERR_EV 0058851329 2 Non Fatal Errors
FERR_EV 0058851330 2 Fatal Errors

Figure 196 (Part 1 of 2). NetView for AIX event - l (Sorted by Event Number) August
1994

 Copyright IBM Corp. 1994 287

NUP_EV 0058916864 3 Node Up
NDWN_EV 0058916865 3 Node Down
IUP_EV 0058916866 3 Interface Up
IDWN_EV 0058916867 3 Interface Down
SC_EV 0058916868 3 Segment Critical
NC_EV 0058916869 3 Network Critical
SNMP_EV 0058916871 3 SNMP Status Event
LLAC_EV 0058982400 4 Link Level Address Changed
MLLA_EV 0058982401 4 Mismatch of Link Level Address
ULLA_EV 0058982402 4 Undetermined Link Level Address
OIC_EV 0058982403 4 Object Identifier Change
SDC_EV 0058982404 4 System Descr Change
SNC_EV 0058982405 4 System Name Change
SMC_EV 0058982406 4 Subnet Mask Change
FSC_EV 0058982407 4 Forwarding status change
FTH_EV 0058982408 4 Forwarding to a host
SCC_EV 0058982410 4 System Contact Change
SLC_EV 0058982411 4 System Location Change
ITC_EV 0058982412 4 Interface Type Change
IDC_EV 0058982413 4 Interface Descr Change
BSM_EV 0058982414 4 Bad Subnet Mask
AA_EV 0059047936 5 Application Alert
APUP_EV 0059179056 7 Application Up Event
APDN_EV 0059179057 7 Application Down Event
TATM_EV 0059179068 7 Tralert change tracemask Event
NMCR_EV 0059179070 7 Change netmon retry count

Figure 196 (Part 2 of 2). NetView for AIX event - l (Sorted by Event Number) August
1994

288 Examples of Using NetView for AIX

Appendix F. Nvevents X11 app-defaults File

!
! defines maximum number of events displayed by the application
!
nvevents.maxNumEvents : 500
!
! defines maximum number of concurrent opened workspaces
!
nvevents.maxNumWS : 20
!
! defines maximum number of events to be loaded from ovevent.log
!
nvevents.maxLoadEvents : 500
!
! defines initial presentation style (card or list)
!
nvevents.initialPresCard : True
!
! defines if workspace name is located at right or left of the window
!
nvevents.posRightName : True
!
! directory used when saving the last active filters
!
nvevents.profileDir : $HOME
!
! directory used when reading filters for filling the filter control window
!
nvevents.filterDir : /usr/OV/filters/filter.samples
!
! directory used when creating reports
!
nvevents.reportDir : $HOME
!
! directory used when saving workspaces
!
nvevents.saveDir : $HOME
!
! size of nvevents windows
!
nvevents.widthMain : 800
!
! size of the nvevents windows
!
nvevents.heightMain : 500
!
! normal card color
!
nvevents.cardColor : lightblue
!
! color of the card when it is selected
!
nvevents.cardColorSelect : #ffdab9

Figure 197 (Part 1 of 2). /usr/lpp/X11/lib/X11/app-defaults/Nvevents Sample

 Copyright IBM Corp. 1994 289

!
! initial position of scroll bar in the card deck
!
nvevents.scrollBarUp : False
!
! defines number of cards to ″card deck″ appearance
!
nvevents.numberFillCards : 4
!
! controls double click interval in selecting items in the list
!
nvevents.doubleClickInterval : 350
!
! color used as background in nvevents application
!
nvevents*background : gray
!
! type of icon used in the nvevents (0: gif)
!
nvevents.iconType : 0
!
! color to be used when writing icon label
!
nvevents.iconLabelColor : black
!
! label for nvevents windows
!
nvevents.iconLabel : Events
!
! icon used in the nvevents application shells
!
nvevents.iconBackground : /usr/OV/icons/gifs/dynamic_events.gif
!
! font list used in the nvevents application
!
nvevents*FontList : Rom10
!
! font to be used by the Card widget to write normal texts
!
nvevents*card*cardFontList : Rom10
!
! font to be selected by the Card widget when writing small texts
!
nvevents*card*smallFontList : tnrR10
!
! defines if application starts up outside of the Control Desk
! valid when running integrated to OVw
!
nvevents.outside : False
!
! defines color to be used in the text written in the cards
!
nvevents*card*cardTextColor : black
!
! defines foreground color to be used in the events application
!
nvevents*foreground : black
!
! defines if log only events forces the execution of associated commands
!
nvevents.executeLogOnly : True
!
! defines if new workspaces are opened outside the Control Desk
!
nvevents.wsOutside : False

Figure 197 (Part 2 of 2). /usr/lpp/X11/lib/X11/app-defaults/Nvevents Sample

290 Examples of Using NetView for AIX

Appendix G. Selected AIX SNA Server Profiles

The current version of AIX NetView Service Point does not require extensive LU
6.2 definitions at the RISC System/6000. The following are some key parameters
that this project used.

] ^
Change/Show Token-Ring SNA DLC Profile

[TOP] [Entry Fields]
Current profile name RS03ATT2
New profile name []
Data link device name [tok0]
Force disconnect time-out (1-600 seconds) [120]
User-defined maximum I-Field size? no

If yes, Max. I-Field size (265-30729) [30729]
Max. num of active link stations (1-255) [32]

Number reserved for inbound activation [0]
Number reserved for outbound activation [0]

Transmit window count (1-127) [16]
Dynamic window increment (1-127) [1]
Retransmit count (1-30) [8]
Receive window count (1-127) [8]
Ring access priority 0
Inactivity time-out (1-120 seconds) [120]
Response time-out (1-40, 500 msec intervals) [4]
Acknowledge time-out (1-40, 500 msec intervals) [1]
Local link name [RS03TOK0]
Local SAP address (02-fa) [04]
Trace base listening link station? yes

If yes, Trace format long
Dynamic link stations supported? yes

Link Recovery Parameters
Retry interval (1-10000 seconds) [60]
Retry limit (0-500 attempts) [20]

Dynamic Link Activation Parameters
Solicit SSCP sessions? yes
CP-CP sessions supported? yes
Partner required to support CP-CP sessions? no

Dynamic Link TG COS Characteristics
Effective capacity [4300800]
Cost per connect time [0]
Cost per byte [0]
Security nonsecure
Propagation delay lan
User-defined 1 [128]
User-defined 2 [128]
User-defined 3 [128]

Comments []
F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image_ `

Figure 198. Token Ring SNA DLC Profi le

 Copyright IBM Corp. 1994 291

] ^
Change/Show SNA Node Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Profile name sna
Maximum number of sessions (1-5000) [200]
Maximum number of conversations (1-5000) [200]
Restart action once
Recovery resource manager (RRM) enabled? no
Dynamic inbound partner LU definitions allowed? yes
NMVT action when no NMVT process reject
Standard output file/device [/dev/console]
Standard error file/device [/dev/console]

Comments []_ `
Figure 199. SNA Node Profi le

292 Examples of Using NetView for AIX

] ^
Change/Show Token Ring Link Station Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
Current profile name RA60003
New profile name []
Use Control Point′ s XID node ID? yes +

If no, XID node ID [*]
* SNA DLC Profile name [RS03ATT2] +
Stop link station on inactivity? no +

If yes, Inactivity time-out (0-10 minutes) [0] #
LU address registration? yes +

If yes, LU Address Registration Profile name [RA60003] +
Trace link? yes +

If yes, Trace size long +

Adjacent Node Address Parameters
Access routing link_address +
If link_name, Remote link name []
If link_address,

Remote link address [400002070000] X
Remote SAP address (02-fa) [04] X

Adjacent Node Identification Parameters
Verify adjacent node? no +
Network ID of adjacent node [USIBMRA]
CP name of adjacent node [RAPAN]
XID node ID of adjacent node (LEN node only) [*]

Link Activation Parameters
Solicit SSCP sessions? yes +
Initiate call when link station is activated? yes +
Activate link station at SNA start up? no +
Activate on demand? no +
CP-CP sessions supported? yes +
If yes,

Adjacent network node preferred server? no +
Partner required to support CP-CP sessions? no +
Initial TG number (0-20) [0] #

Restart Parameters
Restart on activation? no +
Restart on normal deactivation? no +
Restart on abnormal deactivation? no +

Transmission Group COS Characteristics
Effective capacity [4300800] #
Cost per connect time [0] #
Cost per byte [0] #
Security nonsecure +
Propagation delay lan +
User-defined 1 [128] #
User-defined 2 [128] #
User-defined 3 [128] #

Comments []
F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do_ `

Figure 200. Link Station Profi le

Appendix G. Selected AIX SNA Server Profiles 293

] ^
Change/Show Control Point Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name node_cp
XID node ID [*]
Network name [USIBMRA]
Control Point (CP) name [RA6003CP]
Control Point alias [RA6003CP]
Control Point type appn_end_node +
Maximum number of cached routing trees [500] #
Maximum number of nodes in the TRS database [500] #
Route addition resistance [128] #

Comments []

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do
---------- end of screen ----------_ `

Figure 201. Control Point Profi le

294 Examples of Using NetView for AIX

G.1 Selected S/390 VTAM Members
The connection for this project was token-ring.

**
* *
* VTAM SWITCHED MAJOR NODE FOR NTRI *
* 62222 RS/60003 OFFICE NUMBER BB110 *
**
RA2RSKY VBUILD MAXGRP=10, REQUIRED * X
 MAXNO=18, REQUIRED * X
 TYPE=SWNET REQUIRED
**
**
*** RA60003 IS FOR RS60003
* : CPNAME IS USED ON RS60003 INSTEAD OF IDBLK AND IDNUM
*
* IDBLK AND IDNUM USED TO BE:
* IDBLK=05D, PC 3274 EMULATOR *
* IDNUM=62222, SA 20, 3174 TYPE, FIRST 3174 *
*
RA60003 PU ADDR=13, COULD BE ANYTHING (NOT USED) * X

CPNAME=RA6003CP, USED FOR AIX NETVIEW SP * X
MODETAB=AMODETAB, * X
MAXPATH=2, * X
MAXDATA=265, *
MAXOUT=7, *
PACING=7, *
ANS=CONTINUE, *
PASSLIM=7, *
PUTYPE=2, *
DISCNT=(NO), *
ISTATUS=ACTIVE, *
VPACING=8

**
RA600030 LU LOCADDR=0,MODETAB=MODEVR,DLOGMOD=M2SDLCQ
RA60003B LU LOCADDR=0,MODETAB=AMODEAPP,DLOGMOD=NVDMNORM
RA60003V LU LOCADDR=0,MODETAB=MODEVR,DLOGMOD=M2SDLCQ
RA60003W LU LOCADDR=0,MODETAB=MODEVR,DLOGMOD=M2SDLCQ
RA60003X LU LOCADDR=0,MODETAB=MODEVR,DLOGMOD=M2SDLCQ
RA60003Y LU LOCADDR=0,MODETAB=MODEVR,DLOGMOD=M2SDLCQ
RA60003Z LU LOCADDR=0,MODETAB=AMODETAB,DLOGMOD=DSIL6MOD

Figure 202 (Part 1 of 2). Switched Major Node Definit ion Used In This Example

Appendix G. Selected AIX SNA Server Profiles 295

RA600032 LU LOCADDR=2, *
MODETAB=AMODESHO, *
DLOGMOD=AIXLGMD2, *
ISTATUS=ACTIVE

RA600033 LU LOCADDR=3, *
MODETAB=MODNDM12, *
DLOGMOD=AIXLGMD1, *
ISTATUS=ACTIVE

RA600034 LU LOCADDR=4, *
MODETAB=MODNDM12, *
DLOGMOD=AIXLGMD1, *
ISTATUS=ACTIVE

RA600035 LU LOCADDR=5, *
MODETAB=MODNDM12, *
DLOGMOD=AIXLGMD1, *
ISTATUS=ACTIVE

RA600036 LU LOCADDR=6,USSTAB=US327X,SSCPFM=USSSCS,MODETAB=AMODETAB, X
DLOGMOD=M2SDLCQ

RA600037 LU LOCADDR=7,USSTAB=US327X,SSCPFM=USSSCS,MODETAB=AMODETAB, X
DLOGMOD=M2SDLCQ

* CHANGED RA600038/9 MODETABLES,ENTRIES FOR HCON - BDN 11/10/92
RA600038 LU LOCADDR=8,USSTAB=US327X,SSCPFM=USSSCS,MODETAB=AMODHCON, X

DLOGMOD=LU1HCON
RA600039 LU LOCADDR=9,USSTAB=US327X,SSCPFM=USSSCS,MODETAB=AMODHCON, X

DLOGMOD=LU3HCON
RA60003C LU LOCADDR=12,MODETAB=MODEVR,DLOGMOD=M3SDLCQ

Figure 202 (Part 2 of 2). Switched Major Node Definit ion Used In This Example. The
LUs defined above were used by applications other than the Service Point. The AIX SNA
Server is keying on the CPNAME for Service Point functions and an LU need not be
defined.

VBUILD TYPE=CDRSC
NETWORK NETID=USIBMRA

* SERVICE POINT FOR RS60003
RA6003CP CDRSC ALSLIST=(RA60003)
*

Figure 203. CDRSC Definit ion Used In This Example

The above resource, for previous versions of AIX NetView Service Point, was a
resource in the switched major node PU definition as:

RA6003CP LU LOCADDR=0

When using CPNAME and current level of VTAM is being exploited, it is not
necessary to include the LOCADDR=0 in the switched major node. This project
chose to use the above CDRSC and activated the CDRSC prior to activation of
the RISC System/6000 link station. The ″old″ LOCADDR=0 specification was
removed from the switched major node definition.

296 Examples of Using NetView for AIX

Index

Special Characters
/usr/ov/bin/ovxecho 94

A
add_errlog 165
add_error 163
additional 241
additional graphs 241
addtrap 97
AIX

/usr/adm/ras/codepoint 142
/usr/adm/ras/error log 158
catalog 142
errdemon 158
error log 158
error message catalog 142
message 159
Service Point 78

AIX error log
alertable 160
commands 159
customize 164
definitions 162
errdemon 160
errinstal l 162
errlog() 160
errpt 163
errupdate 163
events to alerts 160
make alertable 163

AIX Service Point 139
/usr/ lpp/nvix/scripts/nvix_control 139
catcher 157
CP 157
PU 157

alarm status
alarm outstanding 248
crit ical 248
major 248
minor 248
under repair 248

alert 139, 141
detail 152
recommended actions 155

APIs 169
app_sendtrap 125
arc 241
attached 241
availabi l i ty

degraded 248
dependency 248
failed 248
in test 248

availabi l i ty (continued)
not installed 248
off duty 248
off l ine 248
power off 248

B
Backup Configurator 205
Backup function 195
Backup manager 2
bc 164

C
code point

/usr/adm/ras/codepoint 145
catalog 145
changing 145, 146
qualif iers 147

Code Points 140, 142
subfield 142
subvector 142

community 79
connectivity 172, 173
Control Desk 81, 131
correlate 249
correlation 176, 178
CRON 139

D
daemon

netmon 77
snmpd 77
trapgend 158

daemons 76, 126
gtmd 170
iptopmd 170
noniptopod 170

Database 2, 175
map 177, 178
object 176, 177, 178
topology 177

Discovery 1, 175, 176, 178
netmon 175

E
errdemon 158

trapgend 159
errinstal l 143

delete 143
duplicate 143

 Copyright IBM Corp. 1994 297

errlog() 160
errmsg 142
error ID

event number 165
finding 165

Error Log
add_error 163

errpt 160
event 175

addtrap 97
archive 139
configure 165
error ID 165
log file 139
map 76
network 76
registration 175
search 134
sources 97
variables 96

Event Card
highlight 169
integration 169

Event configuration 2
event f i l ter

activating 124
API′s 126
de-activate 125
editor 122
located 122
ovesmd 126
reasons 121
resister 126
specific trap 123

Event fi lters 121
event search

fi l ter 135
events

activate 149
alert conversion 149
application 81
card 81, 89
colors 87
configure 90
defining 92
EUI 81
fonts 87
modifying 92
ovevent. log 87
parameters 87
usr/ov/bin/xnmtrap 90

G
graph 241
gtmd 175

H
Hardware Monitor 140
host 142

alerts 142

I
ICMP 77
Internet Assigned Numbers Authority 181
ipmap process 170
IPX 78
isManager 206

L
LMU/6000 78, 172
LNM/6000 172
log file 78
logical interface 172

M
Manager Take-over 195

Backup Manager Station 195
Container 195
Managed state 196
Manager Station 195
Polling 196
Sphere of Control 195
Unmanaged state 196

Manager takeover 2
members 241
members arcs 241
MIB 78, 241

enterprise 91
enterprise ID 92, 181
groups 241
ibm-nv6ktopo.mib 241
IBM6611 92
netview6000 92
OID 170
Open Topology 170, 181
tables 241
traps 241

MIB-II 175
objectid 175

MVS/ESA 139

N
netmon 77, 88, 131
NetView for AIX

status 249
NMVT 140

subvectors 140
noniptopod 175
nvevent 81

298 Examples of Using NetView for AIX

O
objects 169
oid_to_command 170, 175
oid_to_protocol fi le 172, 181
Open Topology

API 175, 177, 179
MIB 241
object types 172
traps 175

Open topology example
NFS 180
Protocol ID 181

Open Topology MIB Tables 241
Open Topology Terms

arc 172
connectivity 172
graph 172
member 173
SAP 173
Service Access Point 173
simple connection 173
underlying arc 173
vertex 172

operational state 248
ovactiond 78
ovelmd 78
ovesmd 78, 126
ovevent. log 139
ovstatus 139

P
physical interface 172
pmd 78
protocol 173

transfer 179
protocol ID 172
protocol submaps

xxmap 179
Protocols 169, 179

CMOT 78
SNMP 78

R
RFC1215 78
RUNCMD 78, 140

ASIS 157
case 157
netvasis 158

S
S/390 NetView 139, 140

agent 140
BNJxxUTB 152
code point 151
CPTBL 152

S/390 NetView (continued)
hardware monitor 152, 153
LISTALC 152
manager 140
NCCF 152
RUNCMD 157

Sample programs
wtgtm 180
wtotapi1 180

send_trap 97, 114
simple connection 241
SMIT 139
SMUX 77, 79

subagent 77
trapgend 158

SNA 139
LU6.2 139, 140
SSCP-PU 140

SNA Manager/6000 172
SNMP 76, 78, 141, 169

API 78
GET 77
MIB 78

snmpcollect 78
snmpd 79, 159
snmpd.conf 79
spappld 78, 139, 140
Sphere of Control 195
State

available 248
disabled 248
enabled 248
unavailable 248

State and Status
ISO 10164 248

States and Status
mapping 249

status
alarm 248
availabi l i ty 248
propagation 169
unknown 248

subvectors 140
symbols 169
Systems Monitor for AIX 3

trapd 7

T
topology 175, 241
tralertd 78, 139
trap 79

Authentication 80
Coldstart 80
LinkDown 80
Linkup 80
Warmstart 80

trap-notify 159

Index 299

t rapd 77, 78
trapgend 158
traps 76, 242

addit ionalgraphinformationvariablechange 242
arcstatechange 242
arcvariablechange 242
deletedarc 242
deletedmember 242
deletedmemberarc 242
deletedsap 242
deletedsimpleconnection 242
deletedunderlyingarc 242
deletedunderlyingconnection 242
deletedvertex 242
enterprise-specific 76
enterpriseSpecific 97
generic 150
memberinformationvariablechange 242
newaddit ionalgraphinformation 242
newarc 242
newmemberarc 242
newmemberinformation 242
newmembertrap 242
newsaptrap 242
newsimpleconnection 242
newunderlyingarc 242
newunderlyingconnection 242
newvertex 242
simpleconnectionstatechange 242
simpleconnectionvariablestatechange 242
snmptrap 97, 114
vertexstatechange 242
vertexvariablechange 242

U
UDP 179
underlying arc 241
underlying connection 241

V
vertex 173, 178, 241

W
workspace

static 134, 135
workspaces

dynamic 81, 129
example 129
static 81
toggle 131

wtevent1 128
wtgtm 180
wtotapi1 180

X
XMP 78
xxmap 78, 175, 177, 178
xxmap process 170

300 Examples of Using NetView for AIX

ITSO Technical Bulletin Evaluation RED000

International Technical Support Organization
Examples of
Using NetView for AIX
November 1994

Publication No. GG24-4327-00

Your feedback is very important to help us maintain the quality of ITSO Bulletins. Please fill out this
questionnaire and return it using one of the following methods:

• Mail it to the address on the back (postage paid in U.S. only)
• Give it to an IBM marketing representative for mailing
• Fax it to: Your International Access Code + 1 914 432 8246
• Send a note to REDBOOK@VNET.IBM.COM

Please rate on a scale of 1 to 5 the subjects below.
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____

Organization of the book
Accuracy of the information
Relevance of the information
Completeness of the information
Value of illustrations

Grammar/punctuation/spell ing
Ease of reading and understanding
Ease of finding information
Level of technical detail
Print quality

Please answer the following questions:

a) If you are an employee of IBM or its subsidiaries:

Do you provide billable services for 20% or more of your time? Yes____ No____

Are you in a Services Organization? Yes____ No____

b) Are you working in the USA? Yes____ No____

c) Was the Bulletin published in time for your needs? Yes____ No____

d) Did this Bulletin meet your needs? Yes____ No____

If no, please explain:

What other topics would you like to see in this Bulletin?

What other Technical Bulletins would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Name Address

Company or Organizat ion

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

ITSO Technical Bulletin Evaluation RED000
GG24-4327-00 IBM 

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Organization
Department 545, Building 657
P.O. BOX 12195
RESEARCH TRIANGLE PARK NC
USA 27709-2195

Fold and Tape Please do not staple Fold and Tape

GG24-4327-00

IBM 

Printed in U.S.A.

GG24-4327-00

	Examples of Using NetView for AIX
	Abstract
	Contents
	Figures
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	Acknowledgments

	Chapter 1. Overview of NetView for AIX V3R1
	NetView for AIX V3R1 and HP OpenView V3.3
	Summary of Selected NetView for AIX V3R1 Enhancements

	Chapter 2. Discovery
	What is Discovery in NetView for AIX?
	Open Technology
	Discovery and Polling Daemons
	The netmon Daemon
	The trapd Daemon
	The ovtopmd Daemon
	The ipmap Application
	Address Resolution
	Name Resolution
	Selection Name and the Label
	How to Configure the Discovery and Polling Options
	SNMP Configuration
	Topology/ Status Polling Configuration
	The Seed File
	More About the Discovery Process
	Discovery Agent
	Problem Determination
	Example of Online Help
	Some Useful Hints

	Chapter 3. Database Extensions
	Overview of the Databases
	SnmpCollect
	Tralertd
	The trapd. log File
	Openview
	Extracting Information from the Flat File Database
	What Database Support is New in NetView for AIX?
	Configuration Steps
	Configuration of the AIX System for Use of RDBMS
	Create the Database
	Specifying Default RDBMS System
	Specify that ovtopmd Will Use a Relational Database
	Creation of SQL Tables in Openview Database
	Using IP topology SQL Tables
	Structure of IP Topology SQL Tables
	Conversion Between Flat File and SQL Database
	Examples of SQL Queries for the IP Topology Database
	Combining and Formatting SQL Queries
	SQL Sample wtqnode
	SQL Sample wtqnetwork
	Integrating SQL Queries Into the NetView for AIX GUI
	trapdlog SQL Table
	Structure of the trapdlog Table
	Managing the trapdlog SQL Table
	Using the Information in the trapdlog SQL Table
	Using the trapquerysql Command
	Using SQL to Extract trapdlog Data
	Using Embedded SQL with trapdlog
	Handling Multi- Line Events
	snmpCollect SQL Table
	Structure of the snmpCollect SQL Table
	Managing the snmpCollect Data
	Using the Information in the snmpCollect SQL Tables
	Built- in Query Commands
	Using SQL Select Commands with coldata
	Performance Considerations
	Extending SQL Support to the Object Database
	An Example of Using wtovwconv

	Chapter 4. Event Configuration
	Summary of AIX V3 Event, Trap and Alert Management
	NetView for AIX Events and Traps
	NetView for AIX Event and Trap Daemons
	NetView for AIX Daemons and Agents Raising Events
	NetView for AIX Daemons Acting on Events
	SNMP Configuration for AIX
	NetView for AIX Events
	The NetView for AIX Event Screen
	Event Card Information
	NetView for AIX Event Configuration
	Defining or Modifying Events
	Adding a New Enterprise
	Adding New Events
	The Event Log Format Field
	The Source Field
	Event Customization from the Command Line
	Sample Event Generation Shell Script
	Status Source and User Symbols
	Adding a New Enterprise with an Associated Event
	NetView for AIX Filters
	Filter Editor Screen
	Activating a Filter
	Using the Filter APIs
	Dynamic Workspaces in NetView for AIX
	Dynamic Workspace Creation for Example 1
	Dynamic Workspace Creation for Example 2
	Searching for Events in the Current Event Workspace
	Searching by Criteria
	Searching by Filter
	Displaying Event Information
	Event Log
	Trap to Alert Conversion
	Host Interaction Examples
	Connection with RISC System/ 6000 Service Point and S/ 390 NetView
	Sending a NetView for AIX Event to S/ 390 NetView
	Customizing NetView for AIX Aimed at S/ 390 Host Alerts
	Changing the Description Code Point
	Changing the Probable Cause Code Point
	Code Point Qualifiers
	Checking in S/ 390 NetView
	Default Trap to Alert Conversions
	S/ 390 NetView Code Point Customization
	Sending Commands from S/ 390 NetView to NetView for AIX
	AIX Error Log Interaction with NetView for AIX
	trapgend Daemon
	AIX Error Log Examples
	Example of Using the AIX errlog to Generate Events
	Converting Existing AIX Errors into Events
	Example of Creating New Error Definitions
	NetView for AIX Event Configuration

	Chapter 5. NetView for AIX Open Topology
	Open Topology Components
	Applications Using Open Topology
	Terms and Concepts
	Specifying Icons when Using Open Topology
	Network Discovery with Open Topology
	Open Topology Service Access Points
	The Discovery Process
	Open Topology Invocations
	Using Open Topology Correlation
	The Open Topology API
	Elements of the Open Topology API
	Open Topology Samples
	Worked Example Using Open Topology Sample Code

	Chapter 6. Manager Takeover
	Definitions
	Management Example Scenario
	Configuring Managers and Containers
	Aids to Planning the Network Management Topology
	Defining a Seed File
	Creating a Seed File
	Using the Seed File with the NetView for AIX
	Creating a Seed File Using a NetView for AIX V3R1 Application
	Running the Backup Process
	Backup Configuration EUI
	Adding a New Manager to the Backup Configuration
	Container Configuration
	Configuration Summary
	The ITSO Environment
	Using Netmon Status to Drive Manager Backup, Case 1
	Effect on RS60003 of a Re-IPL of RS60001
	Effect on RS60003 of the Return of RS60001
	Using Netmon Status to Drive Manager Backup, Case 2
	Usage Notes

	Chapter 7. wtdriver6/wteuiap6 Sample NetView for AIX EUI API
	Summary of NetView for AIX Interfaces
	ITSO wteuiapx EUI Samples
	wteuiap6 Addressing the Multiple Operator Requirement
	Installing and Managing wteuiap6
	wtdriver6 Functions
	Output of wtdriver6 stat
	wteuiap6 Example 1
	wteuiap6 Example 2
	Execution Panels

	Appendix A. Open Topology MIB Reference
	A.1 The Open Topology MIB
	A.2 An Open Technology MIB Cross Reference
	A. 2.1 Vertex Group: .1.3.6.1.4.1.2.5.3.1
	A. 2.2 Simple Connection Group: .1.3.6.1.4.1.2.5.3.2
	A.2.3 Arc Group: .1.3.6.1.4.1.2.5.3.3
	A. 2.4 Graph Group: .1.3.6.1.4.1.2.5.3.4
	A.3 State Information
	A.3.1 Operational State
	A.3.2 Status Information
	A. 3.3 Mapping States and Status to NetView for AIX Displays

	Appendix B. Automatic Seed File Example Programs
	Appendix C. Open Topology Program Samples
	C. 1 Program Listing for wtotapi1. c
	C. 2 wtgtm Shell Script Sample Listing

	Appendix D. Database Samples
	D. 1 Sample Shell Script wtqnode
	D. 2 Sample C Program wtqnode
	D. 3 Sample C Program wtqnetwork
	D. 4 Sample C Program wttraplog
	D. 5 Sample Program wtovwconv

	Appendix E. NetView for AIX Default Events
	Appendix F. Nvevents X11 app-defaults File
	Appendix G. Selected AIX SNA Server Profiles
	G. 1 Selected S/ 390 VTAM Members

	Index
	Special Characters
	A
	B
	C
	D
	E
	H
	I
	L
	M
	N
	G
	O
	P
	R
	T
	S
	X
	U
	V
	W
	ITSO Technical Bulletin Evaluation RED000

